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26.2 Vacuum energy in QED.

Consider the vacuum energy in QED at two loop. Argue that one of the two diagrams

vanishes for a charge-neutral vacuum. Connect the other one to the one-loop photon

polarisation Πµν and use our old results to calculate it.

The vacuum diagrams in QED at two-loop order are given by

We can view each half of the left diagram as the vev of the current operator jµ, with
〈

j0
〉

as the
charge of the vacuum. Since the vacuum should be neutral, we expect that

〈

j0
〉

and thus 〈jµ〉
vanishes. This is guranteed by the Furry theorem which informs us that indeed the left diagram
vanishes. Alternatively, we see by direct calculation that

=

∫

ddp

(2π)d
tr[γµ(p/+m)]

p2 −m2 + iε
=

∫

ddp

(2π)d
4pµ

p2 −m2 + iε
= 0 , (340)

because the integrand is antisymmetric.

Next we note that we can write the right diagram as

=
1

2

∫

ddq

(2π)d
−i(ηµν − (1− ξ)qµqν/q2)

q2 + iε
× (341)

with S = 1/2 as the relative symmetry factor of the two vacuum diagram. Then we express the
vacuum polarisation as

Πµν(q
2) = (q2ηµν − qµqν)Π(q

2) ,

use ηµνηµν = d and obtain

−i(ηµν − (1− ξ)qµqν/q2)(q2ηµν − qµqν)iΠ(q
2) = (d− 1)q2Π(q2) . (342)

We found thus

=
d− 1

2

∫

ddq

(2π)d
Π(q2) ≡ −iρ

(2)
QED . (343)

Finally we insert

Π(q2) = AΓ(2− d/2)

∫ 1

0
dxx(1− x) [m2 + x(1− x)q2]−2+d/2 (344)
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substitute t2 = x(1− x)q2 and evaluate the integrals,

ρ
(2)
QED =

12e2

(4π)d/2
Γ(2− d/2)

∫ 1

0
dxx(1− x)

∫

ddq

(2π)d
[m2 + x(1− x)q2]−2+d/2 (345)

=
12e2

(4π)d/2
Γ(2− d/2)

∫ 1

0
dx [x(1− x)]1−d/2

∫

ddt

(2π)d
[m2 + t2]−2+d/2 (346)

=
12e2

(4π)d
Γ(2− d)

∫ 1

0
dx [x(1− x)]1−d/2 m2d−4 (347)

=
12e2

(4π)d
Γ(2− d/2)2

(3− d)(2 − d)
m2d−4 . (348)

Thus the 2-loop vacuum energy in QED is proportional to e2
∑

f q
2
fm

4
f .
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