
Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

3.9 ζ function regularisation.

a.) The function f(t) = t/(et−1) is the generating function for the Bernoulli numbers Bn,
i.e.

f(t) =
t

et − 1
=

∞∑

n=0

Bn

n!
tn . (53)

Calculate the Bernoulli numbers Bn for n ≤ 3.
b.) The Riemann ζ function can be defined as

ζ(s) =

∞∑

n=1

1

ns
(54)

for s > 1 and then analytically continued into the complex s plane. The Bernoulli numbers
are connected to the Riemann ζ function with negative odd argument as

ζ(1− 2n) = −
B2n

2n
. (55)

This allows you to find with magical ease the sum needed in the Casimir energy (in 1+1
dimensions),

∑
∞

n=1 n = ζ(−1) = −B2/2 = −1/12. Less magically, show using

1

a

a

ea − 1
=

1

a

∞∑

n=0

Bn

n!
an (56)

that you can split the sum into a divergent and a finite part. The divergent term will
cancel in the difference of the vacuum energy with and without plates, and the remaining
finite term is determined by B2/2.

a.) Work is easier, if even or odd Bernoulli numbers vanish above a minimal n. In order to check
this, we want to divide f(t) into its even and odd parts. This requires to replace et by terms like
ex ± e−x,

t

et − 1
+

t

2
=

t

2

(

2
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+

e−t/2

e−t/2

)

=
t

2

(

et/2 + e−t/2

et/2 − e−t/2

)

or

f(t) =
t

et − 1
=

t

2
coth

t

2
−

t

2
.

Since t coth t is an even function, all odd Bernoulli numbers except the first one vanish, B2k+1 = 0
for k > 0.
Then we calculate the first Bernoulli numbers, expanding the generating function in a power-series
and comparing then the coefficients.
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2
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Thus B0 = 1, B1 = −1
2 , and B2 =

1
6 .

An simpler way to derive higher Bernoulli numbers is the following: Setting bn = Bn, the defini-
tion (53) becomes

t

et − 1
=

∞∑

n=0

bn

n!
tn = ebt (58)

or

t = e(b+1)t − ebt = (b+ 1)t− bt+
∞∑

n=2

(b+ 1)n − bn

n!
tn . (59)

The coefficients of tn with n ≥ 2 have to vanish, and thus (b+ 1)n = bn = Bn. For instance

b2 = (b+ 1)2 = b2 + 2b+ 1 ⇒ b = B1 = −1/2 , (60)

b3 = (b+ 1)3 = b3 + 3b2
︸︷︷︸

3B2

+ 3b
︸︷︷︸

−3/2

+1 ⇒ b2 = B2 = 1/6 , . . . (61)

Hence this method requires as only input Pasquale’s triangle for the binomial coefficients.

b.) We have to calculate the regularised sum S = lima→0
∑

∞

n=1 ne
−an. We repeat the first two

steps of the lectures, but factor out this time ea,

S =
∞∑

n=1

ne−an = −
∂

∂a

∞∑

n=1

e−an = −
∂

∂a

1

ea − 1
.

We recognise in the last term the generating function for the Bernoulli numbers, if we add a
factor a. Thus

1

a

a

ea − 1
=

1

a

∞∑

n=0

Bn

n!
an =

1

a
−

1

2
+

a

12
+ 0−O(a3).

Taking a derivative w.r.t. a and then the limit a → 0 we obtain

S = −
∂

∂a

∞∑

n=1

e−an =
1

a2
−

1

12
.

We have managed to separate the vacuum energy into a divergent term ∝ 1/a2 and a finite term.

The divergent term will be cancelled by the same term in the “free” (without plates) term in the

vacuum energy, the finite term remains and constitutes the physical result for the difference of

the two vacuum energies.

As a bonus, let us show how one derives the relation (55). We start by generalising the previous
definitions, introducing the Bernoulli polynomials Bn(z) by

tetz

et − 1
=

∞∑

n=0

Bn(z)

n!
tn (62)

and the Hurwitz zeta function ζH(s, a) by

ζH(s, a) =
∞∑

n=0

1

(n+ a)s
. (63)
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Next we rescale the integral representation of the Gamma function by u = λt,

Γ(s) =

∫
∞

0
du sz−1e−u = λs

∫
∞

0
dt ts−1e−λt . (64)

Then we set λ = n+ a and find

1

(n+ a)s
=

1

Γ(s)

∫
∞

0
dt ts−1e−(n+a)t . (65)

Thus

ζH(s, a) =
1

Γ(s)

∫
∞

0
dt ts−1

∞∑

n=0

e−(n+a)t =
1

Γ(s)

∫
∞

0
dt ts−1 e−at

1− e−t
. (66)

This defines an integral representation of the zeta function valid for ℜ(s) > 1. The last factor
becomes identical to the generating function (62), if we write ts−1e−at = ts−2te−at.
Note that we are interested in s = −k, k ∈ N0. For these values, the Gamma function has simple
poles and thus only the singular part of the integral can contribute. We extract this part splitting
first the integral in two terms,

ζ(s, a) =
1

Γ(s)

∫ 1

0
dt ts−2 (−t)e−at

e−t − 1
+

1

Γ(s)

∫
∞

1
dt ts−2 (−t)e−at

e−t − 1
. (67)

The integral in the second term is an entire function; therefore this term does not contribute to
ζH(−k, a). Next we evaluate the first integral,

∫ 1

0
dt ts−2 (−t)e−at

e−t − 1
=

∫ 1

0
dt ts−2

∞∑

n=0

Bn(a)

n!
(−t)n (68)

=
∞∑

n=0

Bn(a)

n!

(−1)n

s− n+ 1
(69)

Again only the singular term n = k + 1 survives in ζH(−k, a),

ζH(−k, a) = lim
ε→0

1

Γ(−k + ε)

Bk+1(a)

(k + 1)!

(−1)n

ε
= −

Bk+1(a)

k + 1
. (70)

In the last step, we used an expansion of the Gamma function we derive below. Setting now

a = 0, we obtain the desired relation (55) as special case.

Finally, we note that ζH(s, a) has a pole with residium B0(a) = 1 for s = −k = 1. Extending

(66) into the complete complex plane, one sees that this is the only pole of ζH(s, a).
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