
Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

4.5 Casimir effect.

Repeat the calculation of the Casimir effect for a scalar field in 3+1 dimensions [Hint:
Convert the integration over transverse momenta into an integration over energy.]

Denoting with D2 the area of the plates, with L their distance and setting k⊥ = kxky for the
d = 2 transverse dimensions, the energy between the plates is (per polarisation mode)
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with
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.

A simple and fast way is to follow the approach from the lectures, adding the cutoff function e−εω.
Introducing polar coordinates dkxdky = 2πdk⊥ k⊥ and using then ωdω = dk⊥ k⊥, it follows
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where we set also K = π/L. Now we perform the ω integral, factor out eεK and perform then
the sum,
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We recognize in the last factor the generating function for the Bernoulli polynomials, and expand
up to O(ε0) terms in I using B4 = −1/30,
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The (transverse) energy density follows
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The first term corresponds to the free vacuum energy and will drop out in the difference. The
second term seems dangerous, but does not depend on the distance of the plates. Hence it does
not contribute to the force, while the last one gives
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The corresponding result for the electromagnetic field should be multiplied by a factor two,

accounting for the two polarization states of a photon.
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As alternative, one can combine dimensional and zeta function regularization,
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Substituting y = Lk⊥/(nπ) and using the definition of Euler’s beta function,
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, (96)

the energy becomes
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Next we replace the divergent sum by the Riemann zeta function, ζ(s) ≡
∑

∞

n=1
n−s. For even d,

i.e. our case of interest, we can further replace the zeta function by Bernoulli polynomials and are
done. For odd d, the Bernoulli polynomials are zero, while the Gamma function in the prefactor
diverges. To proceed for general d, one can use the reflection formulae of both functions,
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to re-write the energy as
E
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For d = 2 transverse dimensions, one arrives with ζ(4) = π4/90 at
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We can check this result with the previous one obtained for 1+1 dimensions, or d = 0. Then our
zeta-function regularized result reads
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since Γ(1) = 1 and ζ(2) = π2/6.
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