5.4 Stress tensor for an ideal fluid.

a.) In the rest-frame of dust, $T^{00} = \rho$ and $u^{\alpha} = (1, \mathbf{0})$. Hence we can express the stress tensor as $T^{\alpha\beta} = \rho u^{\alpha} u^{\beta}$, an expression which is valid in an arbitrary frame. Writing $u^{\alpha} = (\gamma, \gamma \boldsymbol{v})$, we can identify $T^{00} = \gamma^2 \rho$ with the energy density, $T^{0i} = \gamma^2 \rho v^i$ with the energy/momentum density flux in direction *i*, and $T^{ij} = \gamma^2 \rho v^i v^j$ with the flow of the momentum density component *i* through the area with normal direction *j*.

For an ideal fluid in its rest-frame, the pressure is isotropic $P_{ij} = P\delta_{ij}$. This corresponds to $P_{ij} = -P\eta_{ij}$ and adds -P to T^{00} . Compensating for this gives

$$T^{\alpha\beta} = (\rho + P)u^{\alpha}u^{\beta} - P\eta^{\alpha\beta}$$

b.) In the nonrelativistic limit $v \ll c$, and thus $u^{\alpha} = (\gamma, \gamma v) \rightarrow (1, v)$ and $\rho \gg P$. We set therefore first simply P = 0. We look first at the $\beta = 0$ component of $\partial_{\alpha} T^{\alpha\beta} = 0$, obtaining

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0. \tag{110}$$

This corresponds to the mass continuity equation and, because of E = m for dust, at the same time to energy conservation. Next we consider the $\beta = j = 1, 2, 3$ components,

$$\partial_t(\rho v^j) + \partial_i(v^i v^j \rho) = 0 \tag{111}$$

or

$$\boldsymbol{v}\partial_t \rho + \rho \partial_t \boldsymbol{v} + \boldsymbol{v} \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \rho = 0.$$
(112)

Taking the continuity equation into account, we obtain the Euler equation for a force-free ideal fluid,

$$\rho \partial_t \boldsymbol{u} + \rho(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} = 0.$$
(113)

Including pressure, only $-P\eta^{\alpha\beta}$ affects the Euler equation (since $\rho \gg P$), contributing a ∇P term to its RHS.

c.) From the Lagrangian $\mathscr{L} = -\rho_{\Lambda}$, we find $T^{\alpha\beta} = \rho_{\Lambda}\eta^{\alpha\beta}$. Comparing to the stress tensor of an ideal fluid at rest, we find $\rho = \rho_{\Lambda}$ and $P = -\rho_{\Lambda}$, or w = -1.