Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

5.5 Stress tensor for the electromagnetic field.

i.) We start with the standard method, Noether’s theorem, using the definition
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Since .Z depends only on the derivatives A", we can use the following short-cut: We know
already that

0L = —i S(F, F*) = F' §(9,A,). (115)
o R o
d(0A,/0zY)
and oA )
TS =g B0+ 7 OuFer F7T (117)

Rearranging the indices, we have
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This result in neither gauge invariant (it contains A*) nor symmetric. To symmetrize it, we

should add
0A* 0
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The last step is possible for a free electromagnetic field, 0,F"? = 0. And since the term is a
divergence and antisymmetric in vo, we can add it without changing the conservation law for
TH . The two terms combine to F', and we get
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This is gauge invariant and symmetric. Its trace is zero, T, = 0. The 00 component is
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Using FO* F = —E? and F,, F°T = 2(B% — E?), we obtain
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We identify p = T% and P§% = T comparing to the ideal fluid. Using then T, = p — 3P =0,
the EoS w = 1/3 follows.

ii.) We use Newton’s law
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where T"" is the stress tensor of the field acting with the forece density f, on external currents.

Inserting the Lorentz force f, = F),,j* and Maxwell’s equation j¥ = —O\F vA gives
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We use now the product rule to rewrite this as
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We should rewrite the second term as a symmetric divergence. Starting from
OF, 1 OF OF,
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we have exchanged the indices A and v in the second term. Then we use first in both factors of
the second term the antisymmetry of F,
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then 9, F* = 0 and finally 9, F* = 0,
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Combining, we get
0 VA 1 A oT 8Tli\
_fl/' = w (FMVF + Z 5# FUTF ) — w . (129)
or 1
Ty = —FnF,* + = nu Fpr FO7 (130)

4
Considering the electromagnetic field as an external (i.e. fixed) field, the divergence of its energy-
momentum tensor corresponds to the four-force density on charges.

iii.) We convert p = Tyo = (E? + B?)/2 into a tensor equation noting that this agrees with

p= Taguo‘uﬁ

for an observer at rest, u® = (1,0). Our task is to massage the E? 4+ B? term into the same form:
First we use

1 1
= —F?=_(E? - B?

obtaining
1 1
B2=FE? 4 5F2 — FE? + §F2naﬁuauﬁ .
The energy density becomes
1
p=FE?+ ZFQnaguauﬂ.
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Next we work on the E?: We use Fy, = Ej, or u®F,, = I, obtaining
E’ = —E,E = —u"F,o 'y’
Combining the terms gives
1
p= (—FVQF'Yﬁ + Zna,gFQ)uo‘uﬁ

or
1
Top = —Fory Fy" + Zna@F2 .
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