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5.5 Stress tensor for the electromagnetic field.

i.) We start with the standard method, Noether’s theorem, using the definition

T ν
µ =

∂Aσ

∂xµ

∂L

∂(∂Aσ/∂xν)
− δν

µL . (114)

Since L depends only on the derivatives Aµ
,ν , we can use the following short-cut: We know

already that

δL = −
1

4
δ(FµνFµν) = Fµν δ(∂νAµ) . (115)

Thus
∂L

∂(∂Aσ/∂xν)
= F σν = −F νσ (116)

and

T ν
µ = −

∂Aσ

∂xµ
F νσ +

1

4
δν
µFστF στ . (117)

Rearranging the indices, we have

T µν = −
∂Aσ

∂xµ

F ν
σ +

1

4
ηµνFστ F στ . (118)

This result in neither gauge invariant (it contains Aµ) nor symmetric. To symmetrize it, we
should add

∂Aµ

∂xσ
F ν

σ =
∂

∂xσ
(AµF ν

σ) . (119)

The last step is possible for a free electromagnetic field, ∂σF νσ = 0. And since the term is a
divergence and antisymmetric in νσ, we can add it without changing the conservation law for
T µν . The two terms combine to F , and we get

T µν = −Fµσ F ν
σ +

1

4
ηµνFστF στ . (120)

This is gauge invariant and symmetric. Its trace is zero, T µ
µ = 0. The 00 component is

T 00 = −F 0σ F 0

σ +
1

4
η00Fστ F στ . (121)

Using F 0k F 0

k = −E2 and FστF στ = 2(B2 − E2), we obtain

T 00 = −F 0k F 0

k +
1

2
(B2 − E2) =

1

2
(E2 + B2) ≥ 0 . (122)

We identify ρ = T 00 and Pδij = T ij comparing to the ideal fluid. Using then T µ
µ = ρ − 3P = 0,

the EoS w = 1/3 follows.

ii.) We use Newton’s law

fµ = −
∂T µν

∂xν
,
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where T µν is the stress tensor of the field acting with the forece density fµ on external currents.
Inserting the Lorentz force fµ = Fµνjν and Maxwell’s equation jν = −∂λF νλ gives

fµ = Fµνjν = −Fµν
∂F νλ

∂xλ
. (123)

We use now the product rule to rewrite this as

−fµ =
∂

∂xλ

(

FµνF νλ
)

− F νλ ∂Fµν

∂xλ
. (124)

We should rewrite the second term as a symmetric divergence. Starting from

F νλ ∂Fµν

∂xλ
=

1

2

(

Fνλ

∂Fµν

∂xλ
+ Fλν

∂Fµλ

∂xν

)

(125)

we have exchanged the indices λ and ν in the second term. Then we use first in both factors of
the second term the antisymmetry of F,

=
1

2
Fνλ

(

∂Fµν

∂xλ
+

∂Fλµ

∂xν

)

(126)

then ∂µF̃µν = 0 and finally ∂µFµν = 0,

= −
1

2
Fνλ

∂Fνλ

∂xµ
(127)

= −
1

4

∂

∂xµ

(

FνλF νλ
)

= −
1

4
δλ
µ

∂

∂xλ
(FστF στ ) (128)

Combining, we get

−fµ =
∂

∂xλ

(

FµνF νλ +
1

4
δλ
µ FστF στ

)

=
∂T λ

µ

∂xλ
. (129)

or

Tµν = −FµλF λ
ν +

1

4
ηµν FστF στ (130)

Considering the electromagnetic field as an external (i.e. fixed) field, the divergence of its energy-

momentum tensor corresponds to the four-force density on charges.

iii.) We convert ρ = T00 = (E2 + B
2)/2 into a tensor equation noting that this agrees with

ρ = Tαβuαuβ

for an observer at rest, uα = (1, 0). Our task is to massage the E
2 +B

2 term into the same form:
First we use

L = −
1

4
F 2 =

1

2
(E2 − B

2) ,

obtaining

B
2 = E

2 +
1

2
F 2 = E

2 +
1

2
F 2ηαβuαuβ .

The energy density becomes

ρ = E
2 +

1

4
F 2ηαβuαuβ .
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Next we work on the E
2: We use F0k = Ek or uαFγα = Eγ , obtaining

E
2 = −EγEγ = −uαFγαF γ

βuβ .

Combining the terms gives

ρ = (−FγαF γ
β +

1

4
ηαβF 2)uαuβ

or

Tαβ = −FαγF γ
β +

1

4
ηαβF 2 .

c© M. Kachelrieß


