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8.19 Linear Sigma model II.

a.) We introduce NL = PLN = 1

2
(1 − γ5)N and NR = PRN = 1

2
(1 + γ5)N . Recalling then

{γµ, γ5} = 0, γ5PL = −PL and γ5PR = PR, we find

N̄N = N̄(P 2
L + P 2

R)N = N̄LNR + N̄RNL (187)

N̄∂/N = N̄L∂/NL + N̄R∂/NR (188)

N̄γ5N = N̄(P 2
L + P 2

R)γ
5N = N̄LNR − N̄RNL (189)

The Yukawa interactions become

N̄(σ + iγ5τπ)N = N̄LσNR + N̄RσNL + N̄LiτπNR − N̄RiτπNL = N̄LΣNR + N̄RΣ
†NL (190)

We have now all ingredients necessary to check the invariance of the new terms. The L kinetic
term transforms as

N̄ ′
L∂/N

′
L = N̄LU

†∂/UNL = N̄L∂/NL (191)

and is thus invariant; similiarly for the R term. For the Yukawa terms we obtain

N̄ ′
LΣ

′N ′
R = N̄LU

†UΣU †UNR = N̄LΣNR (192)

N̄ ′
RΣ

†′N ′
L = N̄RU

†UΣ†U †UNL = N̄RΣ
†NL . (193)

Thus the new interactions terms are invariant too.
We find the new contribution to the Noether current by calculating the change δN under an
infinitesimal transformation,

δN = iα · τ/2N

Thus

−α · V µ =
∂L

∂(∂µN)
δN = −N̄γµα · τ/2N (194)

or
V µ = N̄γµ

τ

2
N .

b) Show that the Lagrangian L is invariant under axial isospin transformations

N → N ′ = exp

(

i
β · τ

2
γ5

)

N and Σ → Σ′ = V †ΣV † , (195)

where V = exp (iβ · τ/2), β = (β1, β2, β3) are real parameters and τ = (τ 1, τ 2, τ 3) are
again the Pauli matrices. Find the corresponding conserved Noether current.

b.) Life is easier on the linear level,

NL → N ′
L = PLN

′ ≃ PL

(

1 + i
β · τ

2
γ5

)

N =

(

1− i
β · τ

2

)

PLN = V †NL (196)
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and NR → N ′
R = V NR. We know that the kinetic term of the nucleons is invariant, while the

Yukawa terms transform as

N̄ ′
LΣ

′N ′
R = N̄LV V †ΣV †V NR = N̄LΣNR (197)

N̄ ′
RΣ

†′N ′
L = N̄RV

†V Σ†V V †NL = N̄RΣ
†NL , (198)

i.e. they are invariant too.
Next we use Σ′ = V †ΣV †, Σ′† = V Σ†V and tr(AB) = tr(BA) or Σ ∝ 1, to obtain

tr
(

ΣΣ†
)

→ tr
(

V †ΣV †V Σ†V
)

= tr
(

ΣΣ†
)

.

To find the conserved current, we consider infinitesimal transformations

Σ → Σ′ = V †ΣV † ≃

(

1− i
β · τ

2

)

(σ + iτ · π)

(

1− i
β · τ

2

)

(199)

= σ + iτ · π − iβ · τσ + β · π . (200)

where we used {τ i, τ j} = 2δij and
{

β · τ

2
, τ · π

}

= β · π .

Thus δσ = β · π and δπ = −σβ. Combined with δN = iβ · τγ5N/2, the current is

−β·Aµ =
∂L

∂(∂µN)
δN+

∂L

∂(∂µσ)
δσ+

∂L

∂(∂µπ)
δπ = −N̄γµα·τ/2γ5N+∂µσ(β·π)−σ∂µπ·β . (201)

or
Aµ = N̄γµγ5

τ

2
N − (π∂µσ − σ∂µπ) .

Remark: One can combine vector and axial transformations as follows:

NL → N ′
L = LNL NR → N ′

R = RNR and Σ → Σ′ = V †ΣV † , (202)

where L = exp (iγ · τ/2), R = exp (iδ · τ/2), and γ = δ = α for vector transformations, −γ =
δ = β for axial transformations. Calculating then the Noether currents, one finds

V µ = Rµ +Lµ and Aµ = Rµ −Lµ . (203)

c) Consider again the case of symmetry breaking, m2 → −µ2: What happens with the
nucleons? What happens with the symmetries?

c.) Inserting σ = v+ σ̃ into the Yukawa term, we obtain a mass term mN̄N with m = gv for the

nucleons.

The symmetry is broken from SU(2)L⊗SU(2)R (or SU(2)V⊗SU(2)A) to SU(2)V. Equivalently,

SO(4) is broken to SO(3).
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