Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

9.1 Optical theorem.

a. The Feynman amplitude for the decay is i4A = —ig. Thus the angular integration gives simply
47. In the rest frame of the decaying particle, M? = 4(m? + p?,). Combined we find
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b. The scattering amplitude consists of the s and the u channel exchange of the heavy scalar @,
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with s = (p1 + p2)? and u = (p) — p1)?. The second denominator never vanishes, while the first
is zero for s = M?, i.e. when the virtual scalar ® is created on-shell. If we do not take the finite
life-time of the heavy particle into account, it can travel (as a real particle) for infinite time,
leading to an infinite range of the interaction.

c. The Feynman diagram is
The Feynman rules give
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Setting p = (M,0) and E;, = ++/¢? + m?, we find as poles of the integrand ¢° = E, — ie,
@ = —FE, +ie, @ =M+ E, —ie, and @ =M- E, +ie. We can choose the integration contour
either in the upper or lower half-plane. Choosing the lower one, we pick up the two residues at
@ = E, —ic and @ =M+ E, —ie. Hence we obtain
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The second denominator never vanishes and thus gives no contribution to the imaginary part.
For the first one, we obtain using the given identity
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As E; = +1/¢?> + m? > m, the argument of the delta function is never zero for M < 2m and the
imaginary part of the amplitude vanishes thus. For M > 2m, we can perform the integral,
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Thus we confirmed the relation MT' = Im>..
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