9.1 Optical theorem.

a. The Feynman amplitude for the decay is $i\mathcal{A} = -ig$. Thus the angular integration gives simply 4π . In the rest frame of the decaying particle, $M^2 = 4(m^2 + p_{cms}^2)$. Combined we find

$$\Gamma = \frac{g^2}{2M} \frac{1}{32\pi^2} \sqrt{1 - \frac{4m^2}{M^2}} \, 4\pi = \frac{g^2}{16\pi M} \sqrt{1 - \frac{4m^2}{M^2}}$$

b. The scattering amplitude consists of the s and the u channel exchange of the heavy scalar Φ ,

$$i\mathcal{A} = (-ig)^2 \left[\frac{i}{s - M^2 + i\varepsilon} + \frac{i}{u - M^2 + i\varepsilon} \right]$$

with $s = (p_1 + p_2)^2$ and $u = (p'_2 - p_1)^2$. The second denominator never vanishes, while the first is zero for $s = M^2$, i.e. when the virtual scalar Φ is created on-shell. If we do not take the finite life-time of the heavy particle into account, it can travel (as a real particle) for infinite time, leading to an infinite range of the interaction.

c. The Feynman diagram is

The Feynman rules give

$$i\Sigma = (-ig)^2 \int \frac{d^4q}{(2\pi)^4} \frac{i}{q^2 - m^2 + i\varepsilon} \frac{i}{(q-p)^2 - m^2 + i\varepsilon}$$

Setting p = (M,0) and $E_q = +\sqrt{q^2 + m^2}$, we find as poles of the integrand $q^0 = E_q - i\varepsilon$, $q^0 = -E_q + i\varepsilon$, $q^0 = M + E_q - i\varepsilon$, and $q^0 = M - E_q + i\varepsilon$. We can choose the integration contour either in the upper or lower half-plane. Choosing the lower one, we pick up the two residues at $q^0 = E_q - i\varepsilon$ and $q^0 = M + E_q - i\varepsilon$. Hence we obtain

$$\Sigma = -g^2 \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \frac{1}{2ME_q} \left(\frac{1}{M - 2E_q + \mathrm{i}\varepsilon} + \frac{1}{M + 2E_q - \mathrm{i}\varepsilon} \right)$$

The second denominator never vanishes and thus gives no contribution to the imaginary part. For the first one, we obtain using the given identity

$$\mathrm{Im}\Sigma = g^2 \pi \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \frac{1}{2ME_q} \delta(M - 2E_q)$$

As $E_q = +\sqrt{q^2 + m^2} \ge m$, the argument of the delta function is never zero for $M \le 2m$ and the imaginary part of the amplitude vanishes thus. For M > 2m, we can perform the integral,

$$\mathrm{Im}\Sigma = \frac{g^2}{16\pi} \sqrt{1 - \frac{4m^2}{M^2}}$$

Thus we confirmed the relation $M\Gamma = \text{Im}\Sigma$.

© M. Kachelrieß