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Problem 1

a) The wave function curves away from the x axis in the region with zero po-
tential, which means that E < 0. In the region with non-zero potential, the
wavefunction curves towards the x axis, which means that E > V0.

D E < 0 V0 < E

b) The first excited state in an infinite square well is given by

B ψ(x) =
√

2
L

sin(2πx/L)

c) The triangle inequality gives the minimum and maximum values: |l− s| ≤ j ≤
l + s. Since j has to change in integer steps, we get

C j = 3
2
, 5

2

d) Calculate σxσy − σyσx using matrix multiplication, and we find

D 2iσz

e) When kBT � EF , we can set µ = EF . Calculating 〈n〉 for E = EF then gives

B 1/2

f) The probabilities are given by the square of the amplitudes (expansion coeffi-
cient) of each state.

D 1/3

g) The expectation value is given by a weighted average of the possible energies,
where the weights are the probabilities (square of the amplitudes). In this case,
the possible energy measurements are E1 and E3, each with probability 1/2.

C 5π2h̄2

2mL2
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Problem 2

a) The ground state has no zeros, and the first excited state has one zero.

b) Insert the given form of the wave function into the time-independent Schrödin-
ger equation (with V (x) = 0 in the well):

Ĥψ2(x) = E2ψ2(x)

−h̄2

2m

∂2

∂x2
ψ2(x) = E2ψ2(x)

h̄2k2
2

2m
= E2

Then we insert E2 = V0 = h̄2/(2ma2
0):

h̄2k2
2

2m
= h̄2/(2ma2

0)

k2 =
1

a0

.

c) Writing down the time-independent Schrödinger equation for the region x < 0,
and inserting E2 = V0 = h̄2/(2ma2

0), we get:(
−h̄2

2m

∂2

∂x2
+ 2V0

)
ψ2(x) = E2ψ2(x)(

−h̄2

2m

∂2

∂x2
+ 2

h̄2

2ma2
0

)
ψ2(x) =

h̄2

2ma2
0

ψ2(x)

∂2

∂x2
ψ2(x) =

1

a2
0

ψ2(x)

This equation has the general solution

ψ2(x) = Ceκx +De−κx.

We know that the wave function has to go to zero at −∞, since E2 < 2V0,
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hence we can set D = 0. Inserting this into the Schrödinger equation, we find

∂2

∂x2
eκx =

1

a2
0

eκx

κ2 =
1

a2
0

κ =
1

a0

In a similar manner, using V (x) = 4V0 for x > L, we find

κ′ =

√
3

a0

d) Inserting x = 0, and using the continuity of the wave function, we get

C = A sin(−k2a).

Inserting x = 0, and using the continuity of the derivative of the wave function,
we get

κC = k2A cos(−k2a).

Dividing the first of these equations by the second, and using that κ = k2 = 1
a0

,
we find

tan(−k2a) = 1

k2a =
3π

4
.

Strictly speaking, we can only say that k2a = 3π/4 +nπ, where n is an integer,
but this makes no difference to the wave function, since sin(x+ nπ) = sin(x).

To find the width of the well, we use the continuity of the wave function, and
the derivative of the wave function, at x = L. By dividing the equations like
we did above, and using k2 = 1/a0 and κ′ =

√
3/a0, we get

1

k2

tan(k2(L− a)) = − 1

κ′

tan(k2(L− a)) = − 1√
3

k2(L− a) =
5π

6
.
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Since we already found that k2a = 3π/4, we have

k2L =
5π

6
+

3π

4

k2L =
19π

12
.

Again, we can only really say that k2L = 19π
12

+ nπ, however we can conclude
that the length of the well has to be such that the first excited state can have
a zero, and still go towards the x-axis at each end in order for the derivative of
the wave function to be contiuous everywhere. Hence, k2L has to be between
π and 2π, and we conclude that the correct value is

L =
19π

12
a0.

e) This sketch is made by setting A = 1, and then choosing C to match at the
boundaries, which means that this is not a correctly normalised wave function.

f) Inserting the given form of the wave function into the expression for the pro-
bability current density, we get

j(x) = Re

{(
e−ikx + r∗eikx

) h̄

im

∂

∂x

(
eikx + e−ikx

)}
j(x) =

h̄k

m
Re
{

1− re−2ikx + r∗e2ikx − |r|2
}

j(x) =
h̄k

m

(
1− |r|2

)
.
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In the last step, we have used that Re{a− a∗} = 0.

In the region x > L, the wave function has to fall off exponentially with in-
creasing x when E < 4V0, since this is a classically forbidden area. Hence, it
has to have the form

ψ(x) = Ce−κx,

where κ is a real number. Inserting this into the expression for the probability
current density, we find

j(x) = Re

{
e−κx

h̄

im

∂

∂x
e−κx

}
,

and since the expression in the brackets is purely imaginary, we have

j(x) = 0.

Problem 3

a) First, we find the general expression for the energy eigenstates from the time
independent Schrödinger equation

− h̄2

2m
∇2A sin

nxπx

L

nyπy

L

nzπz

L

=
h̄2π2

2mL2

(
n2
x + n2

y + n2
z

)
.

Then, we insert nx = 2, ny = 1, nz = 1, and get

E = 2
h̄2π2

2mL2

b) First, we note that the expression for the energy with Lx 6= L becomes

E =
h̄2π2

2m

(
n2
x

L2
x

+
n2
y + n2

z

L2

)
.

If we increase the volume of the box, by changing Lx by the infinitesimal
amount dLx, the particle does work on the side of the box, and the energy of
the particle changes by an amount

dE = −FdLx.
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Hence

F =
dE

dLx

=
h̄2π2n2

x

mL3
x

.

Since pressure is force divided by area, the pressure becomes

p =
h̄2π2n2

x

mL5
x

,

or, since we are evaluating the expression at Lx = L, and with nx = 1,

p =
h̄2π2

mL5
.

c) We can fit two particles in each spatial state, since they can have opposite spin.
Hence, we need to identify the four states with the lowest energy. For a cubic
box, these states are ψ111(x), ψ211(x), ψ121(x) and ψ112(x), and the total energy
becomes the sum of the energies of the eight particles. We find

Etot =
h̄2π2

m

[(
12

L2
x

+
12 + 12

L2

)
+

(
22

L2
x

+
12 + 12

L2

)
+

(
12

L2
x

+
22 + 12

L2

)
+

(
12

L2
x

+
12 + 22

L2

)]
=
h̄2π2

m

[
7

L2
x

+
10

L2

]
.

Then we can calculate the pressure by the same procedure that was used in
the previous problem, and we find

p =
7h̄2π2

mL5
.

Note that the force only depends on the terms in the expression for the energy
which contains Lx, which means we could also write down just those terms.
And, note that in this case, with a cubic box and one “excitation” along each
axis, the pressure is equal in all directions.
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Problem 4

a)

(H0 + λδ(x− L/2))
(
|n〉+ λ|ψ(1)

n 〉+O(λ2)
)

=
(
E0
n + λE(1)

n +O(λ2)
) (
|n〉+ λ|ψ(1)

n 〉+O(λ2)
)

Multiplying and collecting terms on the left hand side, we get

(H0 − E0
n)|n〉+ λ(H0 − E0

n)|ψ(1)
n 〉+ λ

(
δ(x− L/2)− E(1)

n

)
|n〉+ (O)(λ2) = 0

Separating out the zero order and first order terms, we then find(
H0 − E0

n

)
|n〉 = 0,(

H0 − E0
n

) ∣∣ψ(1)
n

〉
+
(
δ(x− L/2)− E(1)

n

)
|n〉 = 0.

or (
H0 − E0

n

) ∣∣ψ0
n

〉
= 0,(

H0 − E0
n

) ∣∣ψ(1)
n

〉
+
(
δ(x− L/2)− E(1)

n

) ∣∣ψ0
n

〉
= 0.

b) Multiplying the first order equation by 〈n| from the left, we find

〈n|
(
H0 − E0

n

) ∣∣ψ(1)
n

〉
+ 〈n|

(
δ(x− L/2)− E(1)

n

)
|n〉 = 0.

Using that 〈n|H0 = 〈n|E0
n, the first term becomes 0, and we are left with

〈n|
(
δ(x− L/2)− E(1)

n

)
|n〉.

Moving E
(1)
n outside of the bracket, and using that 〈n|m〉 = δnm, we end up

with

λE(1)
n = 〈n|λδ(x− L/2)|n〉.

c)

λE
(1)
1 = 〈1|λδ(x− L/2)|1〉

= λ
2

L

∫ L

0

sin
πx

L
δ(x− L/2) sin

πx

L
dx

= λ
2

L
sin2 π

2

= λ
2

L
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d) The first excited state, and all other states where n is an even number, have a
zero at x = L/2. Consequently, the particle has zero probability of being at the
location of the delta function perturbation, which means that it is unaffected
by the perturbation. Hence, the energy corrections are zero.
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