
FY3105/8104 Application of symmetry groups in physics
Solution to exam, December 2017

Problem 1

(a) Each conjugacy class consists of all rotations by a given rotation angle, regardless of the rotation
axis. The conjugacy classes are therefore labeled by the rotation angle η.

Justification: Let n1 and n2 be two arbitrary rotation axes. Then there
is a rotation axis m that is perpendicular to both n1 and n2 such that
a rotation by angle ζ around m takes n1 to n2 (as illustrated in the
figure, where the axis m points out of the paper). It can then be seen
that

R(n2, η) = R(m, ζ)R(n1, η)R−1(m, ζ). (1)

This relation shows that the two rotations R(n1, η) and R(n2, η), which
have the same rotation angle η but different rotation axes, are conju-
gate to each other (with R(m, ζ) as the conjugating element) and are
therefore in the same conjugacy class.

(b) We have

D
(j)
m′m(R) = 〈j,m′|U(R)|j,m〉. (2)

(This follows from

〈j′′,m′′|U(R)|j,m〉 =
∑
m′

〈j′′,m′′|j,m′〉D(j)
m′m(R) =

∑
m′

δj′′,jδm′′,m′D
(j)
m′m(R) = δj′′,jD

(j)
m′′m(R), (3)

where we used the orthogonality of basis states, 〈j′′,m′′|j,m′〉 = δj′′,jδm′′,m′ .) For a rotation around the z

axis (n = ẑ), J ·n = Jz. Since Jz|j,m〉 = mh̄|j,m〉, we get exp(−iJzη/h̄)|j,m〉 =
∑∞
r=0

(−iη/h̄)r

r! Jrz |j,m〉 =∑∞
r=0

(−iη/h̄)r

r! (mh̄)r|j,m〉 = exp(−imη)|j,m〉. Thus

D
(j)
m′m(R) = D

(j)
m′m(ẑ, η) = 〈j,m′| exp(−iJzη/h̄)|j,m〉 = exp(−imη)〈j,m′|j,m〉 = e−imηδm′m. (4)

(c) Since χ(R) is a function only of the conjugacy class to which R belongs, it follows from (a) that χ(R)
will only depend on the rotation angle η, not the rotation axis n. To evaluate χ(R) we may therefore
pick n at will. In light of the calculation done in (b), it is clearly convenient to pick n = ẑ. Thus

χ(j)(R) = Tr D(j)(R(ẑ, η)) =

j∑
m=−j

e−imη =

2j∑
r=0

(e−iη)−j+r = eijη
2j∑
r=0

(e−iη)r

= eijη
1− (e−iη)2j+1

1− e−iη
=
eijη − e−ijηe−iη

1− e−iη
=
e−iη/2(ei(j+1/2)η − e−i(j+1/2)η)

e−iη/2(eiη/2 − e−iη/2)
=

sin((j + 1/2)η)

sin(η/2)
. (5)

Here we used
∑n
r=0 x

r = (1− xn+1)/(1− x) (sum of a geometric series) and eiy − e−iy = 2i sin y.

(d) Taking n = ẑ and considering an infinitesimal rotation angle dη, the left-hand side is

U(R)T (k)
q U†(R) = (I − iJzdη/h̄+ . . .)T (k)

q (I + iJzdη/h̄+ . . .) = T (k)
q − i(dη/h̄)[Jz, T

(k)
q ] +O((dη)2), (6)

and the right-hand side is∑
q′

T
(k)
q′ D

(k)
q′q(R) =

∑
q′

T
(k)
q′ e

−iqdηδq′q = T (k)
q e−iqdη = T (k)

q (1− iqdη + . . .) = T (k)
q − iqdηT (k)

q +O((dη)2),

(7)
where we used (4). For each power of dη, the coefficients on the two sides must be the same. We see that

this holds trivially for the zeroth order terms, for which the coefficient is T
(k)
q on both sides. Equating
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the coefficients of the first-order terms gives (−i/h̄)[Jz, T
(k)
q ] = −iqT (k)

q , i.e. [Jz, T
(k)
q ] = h̄qT

(k)
q . QED.

(e) A rank-0 spherical tensor operator has k = 0, so q can only be 0. Furthermore, since r and p are
rank-1 spherical tensor operators, we have k1 = k2 = 1, so q1 and q2 can take values −1, 0, 1. Taking
X → r and Z → p thus gives

T
(0)
0 =

∑
q1,q2

〈11; q1q2|11; 00〉rq1pq2 =

1∑
q1=−1

〈11; q1,−q1|11; 00〉rq1p−q1 , (8)

where in the last step we used that the Clebsch-Gordan coefficients vanish unless q1+q2 = q, i.e. q2 = −q1

in our case. Using the tables of Clebsch-Gordan coefficients we find

T
(0)
0 =

1√
3

(r−1p1 − r0p0 + r1p−1). (9)

Inserting the given expressions for the spherical components of r and p in terms of the cartesian ones,
one finds, after some cancellations,

T
(0)
0 = − 1√

3
(rxpx + rypy + rzpz) = − 1√

3
r · p. (10)

Thus T
(0)
0 is proportional to the dot product (scalar product) r · p. This is a very reasonable result,

since a dot product is invariant under rotations, i.e. it is a scalar (as implied by ”scalar product”), and
a rank-0 spherical tensor is a scalar operator.1,2

Problem 2

(a) (i) We do the proof of b1c = b3 graphically by showing that the effect of the two sides on a triangle
are identical (see the figure below).

(ii) There are several ways to find the missing elements in the multiplication table. One could also here
use the graphical proof method used in (i). Alternatively, one can rewrite the relevant unknown products
in terms of known products. Doing this for the unknown products in the third row gives

c2b1 = c(cb1) = cb2 = b3, (11)

c2b2 = c(cb2) = cb3 = b1, (12)

c2b3 = c(cb3) = cb1 = b2. (13)

The missing elements in the fourth row can then be found by applying the rearrangement theorem to
each of the last three columns. This gives b1b1 = e, b1b2 = c2, and b1b3 = c. Alternatively, it is obvious

1It can be seen from the defining transformation law (Eq. (6) in the problem text) that a rank-k spherical tensor
operator has 2k + 1 components that transform among themselves under rotations according to the irrep D(k). For k = 0
there is thus only one component, which transforms according to the 1-dimensional irrep D(0), which is the trivial irrep, and

so T
(0)
0 is invariant under rotations, i.e. it is a scalar. Equivalently, this can also be seen from the commutators [Jz , T

(k)
q ]

and [J±, T
(k)
q ]. For k = 0 one finds (see the formula set) that all three commutators vanish, and thus T

(0)
0 commutes with

the generator of infinitesimal rotations J ·n = Jxnx + Jyny + Jznz around any rotation axis n, and consequently T
(0)
0 is

invariant under all rotations.
2In this example we took X → r and Z → p. The opposite choice would have given −p · r/

√
3, which is obviously

also a perfectly valid rank-0 spherical tensor operator. Thus r · p and p · r can differ only by another scalar, which can be
found from the commutation relations [rj , pk] = ih̄δjk to be 3ih̄. Using the symmetric combination r · p+ p · r would give
a rank-0 spherical tensor operator that is also hermitian.
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that b1b1 = e since b2i is a 2π rotation which thus is equivalent to the identity element. And since the π
rotations bi therefore are their own inverses, we get

b1b2 = b−1
1 b−1

2 = (b2b1)−1 = c−1 = c2, (14)

b1b3 = b−1
1 b−1

3 = (b3b1)−1 = (c2)−1 = c. (15)

The missing elements in the third row can now be found from the rearrangement theorem. Alternatively,
one can deduce all six missing elements entirely from the rearrangement theorem. For example, this
theorem gives that the missing elements in the third row must be b1, b2 and b3. In the fourth column, b1
and b2 are excluded since they already appear in it, so b3 must appear at the intersection of the third row
and fourth column. Then e must be the other missing element in the fourth column. Similar reasoning
easily gives the missing elements in the fifth and sixth columns.

In conclusion, the complete multiplication table for the group D3 is shown below.

e c c2 b1 b2 b3

e e c c2 b1 b2 b3
c c c2 e b2 b3 b1
c2 c2 e c b3 b1 b2
b1 b1 b3 b2 e c2 c
b2 b2 b1 b3 c e c2

b3 b3 b2 b1 c2 c e

(b) A conjugacy class of a group G consists of a set of elements, such that if a and b are in this set, we
have b = gag−1 for some g ∈ G.

The identity element e is a conjugacy class by itself, since geg−1 = e for any g. Next, let us identify
elements conjugate to c. The multiplication table gives

ece−1 = c, (16)

ccc−1 = ccc2 = c4 = c, (17)

c2c(c2)−1 = c2cc = c4 = c, (18)

b1cb
−1
1 = b1cb1 = b1b2 = c2, (19)

b2cb
−1
2 = b2cb2 = b2b3 = c2, (20)

b3cb
−1
3 = b3cb3 = b3b1 = c2, (21)

which shows that {c, c2} is a conjugacy class. Furthermore,

cb1c
−1 = cb1c

2 = cb2 = b3, (22)

c2b1(c2)−1 = c2b1c = c2b3 = b2, (23)

from which we conclude that {b1, b2, b3} is a conjugacy class. As each element of the group has now been
placed in a conjugacy class, we conclude that D3 has 3 conjugacy classes: {e}, {c, c2}, and {b1, b2, b3}.3

(c) According to Lagrange’s theorem, the order of a subgroup must be a divisor of the order |G| of the
group G itself. Any group G has the subgroups G and {e}, of order |G| and 1, respectively. Since D3

has order 6, any other subgroups must have order 2 or 3. As D3 is a finite group, the distinct powers of
any element form a subgroup. For the π rotations bi we have b2i = e, so {bi, e} is a subgroup of order
2 for i = 1, 2, 3. Also, the distinct powers of c, i.e. {c, c2, c3 = e} is a subgroup of order 3; the distinct
powers of c2 give the same subgroup. In conclusion, D3 has six subgroups: D3, {e, c, c2}, {e, b1}, {e, b2},
{e, b3}, {e}.

3That c and c2 cannot be in the same conjugacy class(es) as b1, b2, and b3 could have been concluded from the outset
from the fact that D3 is a subgroup of SO(3), for which rotations by different angles are in different conjugacy classes
(unless the angles add to a multiple of 2π).
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(d) As the number of irreps equals the number of conjugacy classes, it follows from (b) that D3 has 3
irreps. We denote these by Γ(α) (α = 1, 2, 3). These label the rows of the character table. The columns
are labeled by the conjugacy classes, since the characters are the same for all elements of a conjugacy class.

The irrep dimensions dα satisfy
∑
α d

2
α = |G| (see formula set), which for D3 becomes

d2
1 + d2

2 + d2
3 = 6. (24)

It follows that two dimensions equal 1 and one dimension equals 2. We pick d1 = d2 = 1 and d3 = 2.

Any representation is a homomorphism and must therefore satisfy

Γ(g1g2) = Γ(g1)Γ(g2). (25)

Taking g2 = e gives Γ(g1e) = Γ(g1) = Γ(g1)Γ(e). Multiplying with (Γ(g1))−1 from the left gives
Γ(e) = I, i.e. the identity element is always represented by the unit matrix. Thus χ(α)(e) = dα = 1, 1,
2 for α = 1, 2, 3. This gives the left column of the character table.

For any group, Γ(g) = 1 for all g is a possible solution of (25). As this is a 1-dimensional representation,
it is irreducible. It is called the trivial irrep; we take this to be Γ(1). Thus the characters χ(1)(g) = 1
too. This completes the top row of the character table.

For 1-dimensional irreps, χ(g) = Γ(g), and so the characters themselves must satisfy the homomorphism
property (25), i.e. χ(g1g2) = χ(g1)χ(g2). Taking g1 = g2 = b1, this gives χ(b21) = (χ(b1))2. Using
b21 = e and χ(e) = 1 then gives χ(b1) = ±1. Next, taking g1 = b1 and g2 = c gives χ(b1c) = χ(b1)χ(c).
Using b1c = b3, and χ(b1) = χ(b3) = ±1, this nonzero character can then be cancelled to give χ(c) = 1.
This holds for both the 1d irreps. Since Γ(1) has χ(bI) = 1, Γ(2) must then have the remaining alter-
native χ(bI) = −1 in order to be distinct from Γ(1). This completes the second row in the character table.

To complete the third row in the character table we use the orthogonality relation for columns/classes
(see formula set; I denote the classes by k and k′ as the symbol c is already used for a group element),

3∑
α=1

ekχ
(α)∗
k χ

(α)
k′ = |G|δkk′ . (26)

Taking k = {e} and k′ = {c, c2} gives 1 · (1 · 1 + 1 · 1 + 2 · χ(3)
k′ ) = 0, so χ

(3)
k′ = −1. Instead taking

k′ = {b1, b2, b3} gives 1 · (1 · 1 + 1 · (−1) + 2 · χ(3)
k′ ) = 0, so χ

(3)
k′ = 0. This completes the character table:

{e} {c, c2} {b1, b2, b3}
Γ(1) 1 1 1
Γ(2) 1 1 −1
Γ(3) 2 −1 0

(e) The kernel K of a group homomorphism f : A→ B is the set of elements in the source group A that
are mapped to the identity element in the target group B: K = {a ∈ A | f(A) = eB}. The kernel K
is a subgroup of A that is also normal. A subgroup is normal if it consists of complete conjugacy classes.4

For (matrix) representations, the target group is a matrix group, whose identity element is the unit
matrix. So for each irrep we wish to identify the elements that are mapped to the unit matrix.

For 1-dimensional irreps, the unit matrix is the number 1, and χ(g) = Γ(g), so we can read Γ(g) directly
from the character table. In this way we can determine the kernels for the 1d irreps Γ(1) and Γ(2). For
Γ(1) we see that all elements are mapped to 1, i.e. the kernel K1 = D3, the whole group, which is
obviously a normal subgroup since it consists of all the conjugacy classes. For Γ(2) we see that the kernel

4Equivalently, a normal subgroup is characterized by left and right cosets being identical. But the equivalent criterion
based on complete conjugacy classes is much more practical for checking ”normality” in our case.
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is K2 = {e, c, c2}. We identified this as a subgroup in 2(c), and it consists of the two conjugacy classes
{e} and {c, c2}, so it is also normal.

For the 2-dimensional irrep Γ(3), we have χ(3)(e) = 2. No other elements have character 2 for this irrep, so
the kernel is K3 = {e}. This is a subgroup consisting of the single conjugacy class {e}, so it is also normal.

(f) As mentioned before, the identity element e is always represented by the unit matrix. Since Γ is a
3-dimensional representation, Γ(e) is therefore the 3× 3 unit matrix.

There are several methods that can be used to determine the matrices for the remaining three elements.
One method is to make use of the multiplication table and the homomorphism property (25) to express
each matrix as a product of known matrices. For example,

c2 = cc ⇒ Γ(c2) = Γ(c)Γ(c), (27)

b1 = cb3 ⇒ Γ(b1) = Γ(c)Γ(b3), (28)

b2 = b3c ⇒ Γ(b2) = Γ(b3)Γ(c). (29)

In this way the unknown matrices can be found simply by matrix multiplication.

Another method is based on the transformation rule for basis vectors (see formula sheet), aφi =∑
j φjΓji(a), which gives5 Γji(a) = (φj , aφi). Thus we need to know how the group element a transforms

the orthonormal basis vectors, which are x̂, ŷ, and ẑ in our problem. I will illustrate this method by
finding Γ(b1). We have

b1x̂ =
1

2
x̂ +

√
3

2
ŷ, (30)

b1ŷ =

√
3

2
x̂− 1

2
ŷ, (31)

b1ẑ = −ẑ. (32)

Here, (30) and (31) follow from the figure below (the red arrow is the basis vector of interest (x̂ in the

left panel, ŷ in the right panel) and the blue arrow is the transformed basis vector (b1x̂ in the left panel,
b1ŷ in the right panel)). Furthermore, (32) follows since b1 is a π-rotation around a rotation axis in the

5Derivation: (φk, aφi) =
∑

j(φk, φj)Γji(a) =
∑

j δkjΓji(a) = Γki(a).
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xy plane. This gives

Γj1(b1) = (φj , b1φ1) = (φj , b1x̂) = (φj ,
1

2
x̂ +

√
3

2
ŷ) =

1

2
(φj , x̂) +

√
3

2
(φj , ŷ)

⇒ Γ11(b1) =
1

2
, Γ21(b1) =

√
3

2
, Γ31(b1) = 0, (33)

Γj2(b1) = (φj , b1φ2) = (φj , b1ŷ) = (φj ,

√
3

2
x̂− 1

2
ŷ) =

√
3

2
(φj , x̂)− 1

2
(φj , ŷ)

⇒ Γ12(b1) =

√
3

2
, Γ22(b1) = −1

2
, Γ32(b1) = 0, (34)

Γj3(b1) = (φj , b1φ3) = (φj , b1ẑ) = (φj ,−ẑ) = −(φj , ẑ)

⇒ Γ13(b1) = 0, Γ23(b1) = 0, Γ33(b1) = −1. (35)

The matrix Γ(b1) can then be written down from its 9 matrix elements worked out here.

Other methods may also be possible, including working out the matrices as special cases of general
rotation matrices in SO(3). Regardless of the method, one arrives at the following matrices:

Γ(e) =

 1 0 0
0 1 0
0 0 1

 , Γ(c2) =

 − 1
2 − 1

2

√
3 0

1
2

√
3 − 1

2 0
0 0 1

 ,

Γ(b1) =

 1
2

1
2

√
3 0

1
2

√
3 − 1

2 0
0 0 −1

 , Γ(b2) =

 1
2 − 1

2

√
3 0

− 1
2

√
3 − 1

2 0
0 0 −1

 . (36)

All matrices of this representation have determinant 1. This can be understood from the fact that the
matrices determine the transformation properties of vectors in 3 dimensions under the rotations of D3

and thus constitute a subgroup of the rotation matrices of (the defining, faithful representation of) SO(3),
which have determinant 1.6

(g) Γ is a 3-dimensional representation of D3. From the entries in the leftmost column of the character
table, which are the dimensions of the irreps of D3, one sees that D3 has only 1- and 2-dimensional
irreps. Thus Γ must be reducible.

The decomposition of Γ into irreps of D3 can be written Γ = ⊕3
α=1aαΓ(α), where

aα =
1

|G|
∑
A∈G

χ(α)∗(A)χ(A). (37)

The characters of the representation Γ are easily seen to be χ(e) = 1 + 1 + 1 = 3, χ(c) = χ(c2) =
−1/2− 1/2 + 1 = 0, and χ(b1) = χ(b2) = χ(b3) = −1. This gives

a1 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · (−1)] = 0, (38)

a2 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · (−1) · (−1)] = 1, (39)

a3 =
1

6
[1 · 2 · 3 + 2 · (−1) · 0 + 3 · 0 · (−1)] = 1, (40)

⇒ Γ = Γ(2) ⊕ Γ(3). (41)

Checking the dimensions of (41) to be on the safe side, we see that the rhs has total dimension

6In order to preserve dot products of vectors, it can be shown that the determinant must be ±1, and since rotation
matrices are continuously connected to the unit matrix representing zero rotation, which has determinant 1, general rotation
matrices have determinant 1 too.
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d2 + d3 = 1 + 2, which agrees with the dimension dΓ = 3 of the lhs.7

(h) Since D(1) is a single-valued representation of SO(3), its matrices satisfy the homomorphism property
(25), which in this context reads

D(1)(R1R2) = D(1)(R1)D(1)(R2), (42)

where R1 and R2 are arbitrary rotations of SO(3). As all elements of the group D3 are rotations
around the origin, D3 is a subgroup of SO(3), and so (42) clearly holds also if R1 and R2 are restricted to
the elements of D3. But then (42) becomes simply the defining property of a representation of D3. QED.

Two representations are equivalent if their characters are identical. (This condition also contains within
itself the necessary but not sufficient condition that the dimensions of the two representations must be
identical, since the dimension equals the character of the unit matrix representing the identity element.)
We have already calculated the characters χ of the representation Γ in 2(g), so it just remains to calculate
the characters χ(1)(η) of the representation D(1), for the rotation angles η of the elements of D3, and
check that they agree. For this we use the already encountered Eq. (5) in the problem text (also in the
formula set), which specialized to j = 1 becomes χ(1)(η) = sin(3η/2)/ sin(η/2). This gives

χ(1)(0) = lim
η→0

sin(3η/2)

sin(η/2)
= lim
η→0

3η/2

η/2
= 3 = χ(e), (43)

χ(1)(2π/3) =
sin(π)

sin(π/3)
= 0 = χ(c), (44)

χ(1)(π) =
sin(3π/2)

sin(π/2)
=
−1

1
= −1 = χ(bi). (45)

Thus we see that the relevant characters of D(1) indeed all agree with those of Γ.8

(i) We need to decompose D(2) into the irreps of D3: D(2) = ⊕3
α=1aαΓ(α). Thus we need to calculate

χ(2)(η) = sin(5η/2)/ sin(η/2) for the same values of η as in 2(h). We find

χ(2)(0) = lim
η→0

sin(5η/2)

sin(η/2)
= lim
η→0

5η/2

η/2
= 5, (46)

χ(2)(2π/3) =
sin(5π/3)

sin(π/3)
=
−
√

3/2√
3/2

= −1, (47)

χ(2)(π) =
sin(5π/2)

sin(π/2)
=

1

1
= 1. (48)

This gives

a1 =
1

6
[1 · 1 · 5 + 2 · 1 · (−1) + 3 · 1 · 1] = 1, (49)

a2 =
1

6
[1 · 1 · 5 + 2 · 1 · (−1) + 3 · (−1) · 1] = 0, (50)

a3 =
1

6
[1 · 2 · 5 + 2 · (−1) · (−1) + 3 · 0 · 1] = 2, (51)

⇒ D(2) = Γ(1) ⊕ 2Γ(3) = Γ(1) ⊕ Γ(3) ⊕ Γ(3). (52)

(Let us again check the dimensions. The total dimension on the rhs is d1 + 2d3 = 1 + 2 · 2 = 5, which is
also the dimension of D(2).) We conclude that the five-fold degenerate D(2) level splits into three levels;
one level belongs to the irrep Γ(1) and is therefore nondegenerate, while the other two levels belong to
the irrep Γ(3) and are therefore each two-fold degenerate.

7The result (41) also makes sense by looking at the matrices in the representation Γ, which have an explicitly block-
diagonal structure with a 2×2 ”xy block” and a 1×1 ”z block” , and it is evident that the z coordinate transforms according
to the irrep Γ(2) (invariant under e, c and c2, while changing sign under b1, b2, and b3), and so the xy coordinates therefore
transform according to the 2-dimensional irrep Γ(3).

8Since c2 rotates by an angle 4π/3, you may also want to check that χ(1)(4π/3) = 0, which indeed is the case. Note
that 4π/3 = 2π − 2π/3. One can show that for j integer, i.e. for the single-valued irreps of SO(3), χ(j)(2π − η) = χ(j)(η).
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