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Solutions

1a) The order of a subgroup must be a factor of 12, either 1, 2, 3, 4, 6 or 12.

{e} is a subgroup of order 1.

Subgroups of order 2, all cyclic, are {e, a}, {e, b}, {e, c}.
Subgroups of order 3, also cyclic, are {e, s, w}, {e, t, z}, {e, u, x}, {e, v, y}.
There is one subgroup of order 4, {e, a, b, c}.
Finally, G itself is a subgroup of order 12.

A cyclic group of order n is isomorphic to Zn, the addition group of integers modulo n.

1b) Conjugation classes are: C1 = {e}, C2 = {a, b, c}, C3 = {s, t, u, v}, C4 = {w, x, y, z}.
For example: sas−1 = saw = uw = b, sbs−1 = sbw = vw = c.

And: asa−1 = asa = ta = v, bsb−1 = bsb = ub = t, csc−1 = csc = vc = u.

1c) We see that H = {e, a, b, c} is a normal subgroup, since it is a union of conjugation
classes, H = C1 ∪ C2. It is the only normal subgroup, apart from {e} and G.

Its (simultaneously left and right) cosets are eH = He = H, sH = Hs = C3 and
wH = Hw = C4.

The group elements of the quotient group G/H are the three cosets of H. The fact alone
that G/H is of order 3 (a prime number) proves that it is a cyclic group. H is the unit
element of G/H, and (sH)2 = s2H = wH, (sH)3 = s3H = eH = H.

This is the multiplication table of G/H:

H C3 C4

H H C3 C4

C3 C3 C4 H
C4 C4 H C3

The multiplication table of G as presented in the problem text, with the three cosets of
H grouped together, shows directly the multiplication table of G/H.

1d) There are 4 conjugation classes, and hence 4 irreducible representations.

We know the trivial representation g 7→ 1 for every g ∈ G.

One orthogonality relation is the sum of squares of the dimensions,
n 2

1 + n 2
2 + n 2

3 + n 2
4 = 12.

Since n1 = 1, the unique solution is n1 = n2 = n3 = 1, n3 = 3.

The quotient group G/H is cyclic and Abelian, and all its irreducible representations are
one dimensional. To find them, assume that sH 7→ x, where x is an unknown complex
number. Then wH = (sH)2 7→ x2 and H = (sH)3 7→ x3.
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Since H is the unit element of G/H, in a one dimensional representation it must be
represented by the number 1, hence we must have x3 = 1. There are three solutions:
the trivial representation x = 1, and the two representations x = ω and x = ω2, where

ω = ei 2π

3 =
−1 + i

√
3

2
, ω2 = ω−1 = e−i 2π

3 =
−1 − i

√
3

2
.

How to solve the equation x3 = 1? Write it as

x3 − 1 = (x− 1)(x2 + x+ 1) = 0 .

The two roots x 6= 1 are roots of the equation x2 + x+ 1 = 0.

This gives us the three one dimensional characters of G/H, which are immediately
three one dimensional characters of G. The fourth character of G is then found from
the orthogonality relation which says that columns 2, 3, 4 of the character table are
orthogonal to column 1.

Character table (number of elements of each conjugation class in parenthesis):

C1(1) C2(3) C3(4) C4(4)

χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

1e) The rotation angle α is 0 for the unit element e and π = 180◦ for the second order
elements a, b, c. Either it is 2π/3 = 120◦ for the third order elements s, t, u, v and
4π/3 = 240◦ for w, x, y, z. Or it is 4π/3 = 240◦ for s, t, u, v and 8π/3, equivalent to
2π/3 = 120◦, for w, x, y, z.

The dimension of the ℓ = 2 representation of SO(3) is

lim
α→0

χ(ℓ)(α) = lim
α→0

sin((ℓ+ 1
2 )α)

sin(α
2 )

= 2ℓ+ 1 = 5 .

Furthermore, we have that

χ(2)(π) =
sin(5π

2 )

sin(π
2 )

= 1 ,

χ(2)
(

2π

3

)

=
sin(5π

3 )

sin(π
3 )

=
sin(−π

3 )

sin(π
3 )

= −1 , χ(2)
(

4π

3

)

=
sin(10π

3 )

sin(2π
3 )

=
sin(−2π

3 )

sin(2π
3 )

= −1 .

Thus, the character is

C1(1) C2(3) C3(4) C4(4)

χ 5 1 −1 −1

The square sum of the character values is 52 + 3 × 12 + 8 × (−1)2 = 36 = 3 × 12.

Thus, the multiplicities m1,m2,m3,m4 of the four irreducible representations of A4

are such that m 2
1 + m 2

2 +m 2
3 + m 2

4 = 3. We can tell from this that three irreducible
representations occur with multiplicity m = 1 and the fourth is absent.
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To get dimension 5 we must include the representation of dimension 3 and two re-
presentations of dimension 1. We have to choose the two non-trivial one dimensional
representations in order to get character values that are real (not complex). Thus,
χ(ℓ=2) = χ2 + χ3 + χ4, as we can verify.

Of course, we may use the orthogonality relations to determine the multiplicity of each
irreducible representation. For example,

(χ2, χ) = 1 × 5 + 3 × 1 × 1 + 4 × ω∗ × (−1) + 4 × (ω2)∗ × (−1)

= 5 + 3 − 4(ω2 + ω) = 5 + 3 + 4 = 12 ,

which shows that the multiplicity of χ2 is 1.

2a) We have to compute a(a†)n |0〉. We want to commute the operator a to the right, using
the commutation relation [a, a†] = 1, or aa† = a†a+ 1, and then use that a |0〉 = 0. One
way to do it is as follows,

a(a†)n |0〉 = (a(a†)n − (a†)na) |0〉 = [a, (a†)n] |0〉 .

Using the Leibniz rule repeatedly we get that

[a, (a†)n] = [a, a†](a†)n−1 + a†[a, a†](a†)n−2 + · · · + (a†)n−1[a, a†] = n(a†)n−1 .

Hence,

a |n〉 =
1√
n!
a(a†)n |0〉 =

1√
n!
n(a†)n−1 |0〉 =

√
n

√

(n− 1)!
(a†)n−1 |0〉 =

√
n |n− 1〉 .

Since

a† |n〉 =
1√
n!

(a†)n+1 |0〉 =

√
n+ 1

√

(n+ 1)!
(a†)n+1 |0〉 =

√
n+ 1 |n+ 1〉 ,

we have that
N |n〉 = a†a |n〉 =

√
n a† |n− 1〉 = n |n〉 .

We use n times the relation a(a†)k |0〉 = k(a†)k−1 |0〉 to deduce that

〈n|n〉 =
1

n!
〈0|an(a†)n|0〉 =

n

n!
〈0|an−1(a†)n−1|0〉 =

n(n− 1)

n!
〈0|an−2(a†)n−2|0〉

= . . . =
n!

n!
〈0|0〉 = 1 .

2b) Proof that the operator D = eza†−z∗a is unitary: D† = e(za†−z∗a)† = ez∗a−za†
= D−1.

We have that

DaD−1 = a+ [za† − z∗a, a] +
1

2
[za† − z∗a, [za† − z∗a, a]] + · · ·

= a− z − 1

2
[za† − z∗a, z] + · · · = a− z .

The complex numbers z and z∗ commute with everything, and we have the commutation
relations [a, a] = 0 and [a†, a] = −[a, a†] = −1.

We have also that
(a− z) |z〉 = DaD−1D |0〉 = Da |0〉 = 0 .
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Some candidates used a different trick for computing DaD−1. In a similar way as above
we may show that

[a, (za† − z∗a)n] = nz (za† − z∗a)n−1 .

Writing out the power series defining D−1 = e−(za†−z∗a), we then find that

[a,D−1] = −z D−1 .

Hence,
DaD−1 = DD−1a+D [a,D−1] = a− z .

2c) Let us use first the second method indicated. The Campbell–Baker–Hausdorff formula
simplifies to

eza†
e−z∗a = eza†−z∗a+ 1

2
[za†,−z∗a] = eza†−z∗a+ 1

2
|z|2 ,

since all the higher order commutators vanish. Thus,

D = eza†−z∗a = e−
|z|2

2 eza†
e−z∗a .

Using the power series expansion of the exponentials we get that

e−z∗a |0〉 =

(

I − z∗a+
1

2
(−z∗a)2 + · · ·

)

|0〉 = |0〉 ,

and

eza† |0〉 =

(

I + za† +
1

2
(za†)2 + · · · + 1

n!
(za†)n + · · ·

)

|0〉

= |0〉 + z|1〉 +
z2

2

√
2 |2〉 + · · · + zn

n!

√
n! |n〉 + · · ·

= |0〉 + z|1〉 +
z2

√
2
|2〉 + · · · + zn

√
n!

|n〉 + · · · .

This proves the wanted result,

|z〉 = D |0〉 = e−
|z|2

2 eza†
e−z∗a |0〉 = e−

|z|2

2

∞
∑

n=0

zn

√
n!

|n〉 .

Let us verify that this is an eigenstate of a:

a |z〉 = e−
|z|2

2

∞
∑

n=0

zn

√
n!
a |n〉 = e−

|z|2

2

∞
∑

n=1

zn

√
n!

√
n |n− 1〉 = e−

|z|2

2

∞
∑

k=1

zk+1

√
k!

|k〉 = z |z〉 ,

where we define k = n− 1.

Since D is a unitary operator and the ground state |0〉 is normalized, the coherent state
|z〉 = D |0〉 has to be normalized, but let us verify that it actually is:

〈z|z〉 = e−|z|2
∞
∑

m=0

∞
∑

n=0

(z∗)mzn

√
m!n!

〈m|n〉 .
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The energy eigenstates are orthonormal, 〈m|n〉 = δmn. Orthogonality is a general pro-
perty of eigenvectors with different eigenvalues of a Hermitean operator such as the
Hamiltonian H or the number operator N = a†a. Orthogonality may also be proved
directly by the methods used under point 2a) above. It follows that the double sum
reduces to a single sum,

〈z|z〉 = e−|z|2
∞
∑

n=0

|z|2n

n!
= 1 .

2d) For the energy eigenstates we have that

U |n〉 = U(t) |n〉 = e−itH |n〉 = e−it(n+ 1

2
) |n〉 . (1)

Hence,

U |z〉 = e−
|z|2

2

∞
∑

n=0

zn

√
n!
U |n〉 = e−i t

2 e−
|z|2

2

∞
∑

n=0

(ze−it)n√
n!

|n〉 = e−
it

2 |e−itz〉 .

The alternative method for solving the problem is to compute

UaU−1 = a+ [−itH, a] +
1

2
[−itH, [−itH, a]] + · · · .

With H = a†a+ 1
2 we get that

[H,a] = [a†a, a] = [a†, a] a = −a ,
and hence,

UaU−1 = a+ ita+
1

2
(it)2a+ · · · + 1

n!
(it)na+ · · · = eita .

By Hermitean conjugation, using that U−1 = U †, we get that

Ua†U−1 = (UaU−1)† = e−ita† .

Hence,

UDU−1 = U(t)D(z) (U(t))−1 = ezUa†U−1−z∗UaU−1

= ee−itza†−eitz∗a = D(e−itz) .

Putting these results together we get that

U |z〉 = UD |0〉 = UDU−1U |0〉 = e−
it

2 (UDU−1) |0〉 = e−
it

2 |e−itz〉 .

As a side remark, equation (1) has an interesting consequence. The time development
operator U = U(t) with t = 2π takes the energy eigenstate |n〉 into

U(2π) |n〉 = e−i2π(n+ 1

2
) |n〉 = −|n〉 .

Since every state of the oscillator may be expanded as a linear combination of energy
eigenstates, this proves that U(2π) = −I. Multiplication of any state vector by an overall
phase factor, −1 in this case, does not change the physical state. Hence, all states of
the harmonic oscillator are periodic with period 2π (in the units used here).

Another interesting observation is that

U(π) |n〉 = e−iπ(n+ 1

2
) |n〉 = −i(−1)n |n〉 .

In other words, iU(π) is the parity operator, +1 for n = 0, 2, 4, . . . (even parity), and
−1 for n = 1, 3, 5, . . . (odd parity).
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2e) Using the commutation relations

[H,x] =
1

2
[p2, x] =

1

2
([p, x] p+ p [p, x]) = −ip ,

[H, p] =
1

2
[x2, p] =

1

2
([x, p] x+ x [x, p]) = ix ,

we get that

UxU−1 = x+ [−itH, x] +
1

2
[−itH, [−itH, x]] +

1

3!
[−itH, [−itH, [−itH, x]]] + · · ·

= x− tp− t2

2
x+

t3

3!
p+ · · · = (cos t)x− (sin t) p ,

and

UpU−1 = p+ [−itH, p] +
1

2
[−itH, [−itH, p]] +

1

3!
[−itH, [−itH, [−itH, p]]] + · · ·

= p+ tx− t2

2
p− t3

3!
x+ · · · = (cos t) p+ (sin t)x .

In consequence,

UbU−1 = UxU−1 + iλUpU−1 = (cos t+ iλ sin t)x+ (− sin t+ iλ cos t) p .

We now assume that the state at time t = 0 is the squeezed vacuum state, that

|ψ(0)〉 = |λ, 0〉 .

The state at time t is |ψ(t)〉 = U |ψ(0)〉 with U = U(t) = e−itH .

From the equation b |ψ(0)〉 = 0 follows that

UbU−1 |ψ(t)〉 = UbU−1U |ψ(0)〉 = Ub |ψ(0)〉 = 0 .

If we choose the time t to be one half of the period of the oscillator, t = π, then
UbU−1 = −b, and we see that the state |ψ(π)〉 is again the same squeezed vacuum state
as at time t = 0.

More interesting is what happens after one quarter period, at t = π/2. Then cos t = 0,
sin t = 1, and

UbU−1 = iλx− p = iλ

(

x+
i

λ
p

)

.

This shows that |ψ(π/2)〉 is a different squeezed vacuum state, with squeezing parameter
1/λ instead of λ.

6


