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Solutions

1) The four-group is commutative (Abelian), so each element is its own conjugation class,
and the irreducible representations are one dimensional. There are 4 conjugation classes
and the same number of irreducible representations.

A one dimensional character χ is a representation. Since the elements a, b, c have order
2, a2 = b2 = c2 = e, we must have for g = a, b, c that

(χ(g))2 = χ(g2) = χ(e) = 1 ,

hence χ(g) = ±1. We must also have that

χ(a)χ(b) = χ(ab) = χ(c) .

This gives the following character table:

e a b c

χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

We may check the orthogonality relations for the rows and the columns.

A faithful representation is one where all the different group elements are represented
differently. There is no faithful irreducible representation, we see from the character table
that at least two group elements are represented by the number 1 in any irreducible
representation.

A reducible representation of this group is faithful if it contains at least two of the three
irreducible representations with characters χ2, χ3, χ4. For example a two dimensional
matrix representation D containing χ2 and χ3,

D(g) =

(

χ2(g) 0
0 χ3(g)

)

for g = e, a, b, c ,

which means that

D(e) =

(

1 0
0 1

)

, D(a) =

(

1 0
0 −1

)

, D(b) =

(−1 0
0 1

)

, D(c) =

(−1 0
0 −1

)

.

2a) The order of a group element must be a factor of 16, either 1, 2, 4, 8, or 16. There are

1 element of order 1: I;

7 elements of order 2: −I, ±σ1, ±σ2, ±σ3;

8 elements of order 4: ±iI, ±iσ1, ±iσ2, ±iσ3.

The elements ±I and ±iI commute with all group elements, they are their own conju-
gation classes (one group element in each class).

The elements ±σ1 are conjugate, we have for example that σ2σ1(σ2)
−1 = −σ1.

Thus there are 6 conjugation classes with two elements in each:
{±σ1}, {±σ2}, {±σ3}, {±iσ1}, {±iσ2}, {±iσ3}.
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2b) The possible orders of subgroups are 1, 2, 4, 8, and 16. The subgroups of order 1 and
16 are the trivial ones: the unit element I alone, and the whole group.

There are 7 subgroups of order 2, one for each of the 7 elements of order 2. They are:
{±I}, {I,σ1}, {I,−σ1}, {I,σ2}, {I,−σ2}, {I,σ3}, {I,−σ3}.
The subgroup {I,−I} is normal, it contains complete conjugation classes. The subgroup
{I,σ1}, for example, is not normal, it contains only half of the conjugation class {±σ1}.
There are many subgroups of order 4. One is {±I,±iI}. It is cyclic, generated by either
iI or −iI. This is the centre of the group, defined as the set of group elements commuting
with all group elements. The centre of a group is always a normal subgroup.

Other cyclic subgroups of order 4 are {±I,±iσ1}, {±I,±iσ2}, and {±I,±iσ3}. They
are also normal, since they contain complete conjugation classes.

Non-cyclic subgroups of order 4 are {±I,±σ1}, {±I,±σ2}, and {±I,±σ3}. A non-cyclic
group of order 4 is isomorphic to the four-group. Again, these subgroups are normal.

A normal subgroup of order 8 is the quaternion group {±I,±iσ1,±iσ2,±iσ3}.

2c) Altogether, there are 10 conjugation classes and 10 irreducible representations. There
have to be 8 one dimensional and 2 two dimensional irreducible representations, this is
the only way to make the square sum of the dimensions equal to 16.

In a one dimensional representation the elements of order 2 may have character values
±1, and the elements of order 4 may have character values ±1,±i.

If we divide out by the centre of the group, {±I,±iI}, the factor group is the four-group.
The explicit homomorphism is for example like this:

{±I,±iI} 7→ e , {±σ1,±iσ1} 7→ a , {±σ2,±iσ2} 7→ b , {±σ3,±iσ3} 7→ c .

In this way we get the characters χ1, χ2, χ3, χ4 in the character table below from the
character table of the four-group.

If we divide out by the quaternion group, the factor group is the cyclic group of order
2. The character χ5 in the character table below comes from this factor group.

To finish the one dimensional characters we define χ6(g) = χ2(g)χ5(g),
χ7(g) = χ3(g)χ5(g), and χ8(g) = χ4(g)χ5(g) for a group element g.

I −I iI −iI ±σ1 ±σ2 ±σ3 ±iσ1 ±iσ2 ±iσ3

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 −1 1 −1 −1
χ3 1 1 1 1 −1 1 −1 −1 1 −1
χ4 1 1 1 1 −1 −1 1 −1 −1 1
χ5 1 1 −1 −1 −1 −1 −1 1 1 1
χ6 1 1 −1 −1 −1 1 1 1 −1 −1
χ7 1 1 −1 −1 1 −1 1 −1 1 −1
χ8 1 1 −1 −1 1 1 −1 −1 −1 1
χ9 2 −2 2i −2i 0 0 0 0 0 0
χ10 2 −2 −2i 2i 0 0 0 0 0 0
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A natural guess is that the 2 two dimensional irreducible representations are the defining
representation

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

and its complex conjugate. This completes the character table, given above.

3a) Let R(α) be a rotation by an angle α. Then R(α)R(β) = R(β)R(α) = R(α + β), and
R(2π) = R(0) = I (the identity).

The two dimensional rotation group SO(2) is commutative (Abelian), hence its irredu-
cible representations are one dimensional, by Schur’s lemma.

An irreducible representation of SO(2) is characterized by an integer quantum number
ℓ, such that the rotation R(α) is represented by the complex number eiℓα. The physical
interpretation is that ℓh̄ is the angular momentum.

A symmetry transformation commutes with the Hamiltonian. Hence, it follows from
Schur’s lemma that all states belonging to one irreducible representation of a symme-
try group must have the same energy. But this does not produce degeneracy in the
energy spectrum when all the irreducible representations of the symmetry group are
one dimensional.

3b) We have that

xk =
1√
2

(a†
k

+ ak) , pk =
i√
2

(a†
k
− ak) , k = 1, 2 .

This gives that

L = x1p2 − x2p1 =
i

2
((a†1 + a1)(a

†
2 − a2) − (a†2 + a2)(a

†
1 − a1))

=
i

2
(a†1a

†
2 − a†1a2 + a1a

†
2 − a1a2 − a†2a

†
1 + a†2a1 − a2a

†
1 + a2a1)

= i (a†2a1 − a†1a2) .

L is Hermitean because

L† = −i ((a†2a1)
† − (a†1a2)

†) = −i (a†1a2 − a†2a1) = L .

To see that it commutes with the Hamiltonian we compute

[−iL,H] = [ a†2a1 − a†1a2 , a†1a1 + a†2a2 + 1 ]

= [a†2a1, a
†
1a1] + [a†2a1, a

†
2a2] − [a†1a2, a

†
1a1] − [a†1a2, a

†
2a2]

= a†2 [a1, a
†
1a1] + [a†2, a

†
2a2] a1 − [a†1, a

†
1a1] a2 − a†1 [a2, a

†
2a2]

= a†2 [a1, a
†
1] a1 + a†2 [a†2, a2] a1 − a†1 [a†1, a1] a2 − a†1 [a2, a

†
2] a2

= a†2a1 − a†2a1 + a†1a2 − a†1a2 = 0 .

The operators a and a† are known from the quantum theory of the harmonic oscillator
as annihilation and creation operators. With this knowledge we may conclude without
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computing that L commutes with H. The Hamiltonian H = N1+N2+1 counts the total
number of quanta in the two modes 1 and 2, since N1 = a†1a1 and N2 = a†2a2 are the
numbers of energy quanta in the two modes, and since the energy per quantum is the
same in the two modes. The operator a†2a1 commutes with H because it preserves the
total number of quanta: it destroys one quantum in mode 1 and creates one quantum
in mode 2. Similarly, a†1a2 commutes with H because it destroys one quantum in mode
2 and creates one quantum in mode 1.

3c) We have that

[a+, a†+] =
1

2
[ a1 − ia2 , a†1 + ia†2 ] =

1

2
([a1, a

†
1] + [a2, a

†
2]) = 1 ,

[a−, a†−] =
1

2
[ a1 + ia2 , a†1 − ia†2 ] =

1

2
([a1, a

†
1] + [a2, a

†
2]) = 1 ,

[a−, a†+] =
1

2
[ a1 + ia2 , a†1 + ia†2 ] =

1

2
([a1, a

†
1] − [a2, a

†
2]) = 0 .

Since

a1 =
1√
2

(a+ + a−) , a2 =
i√
2

(a+ − a−) ,

we have that

H = a†1a1+a†2a2+1 =
1

2
((a†++a†−)(a++a−)+(a†+−a†−)(a+−a−))+1 = a†+a++a†−a−+1 ,

and that

L = i (a†2a1 − a†1a2) =
1

2
((a†+ − a†−)(a+ + a−) + (a†+ + a†−)(a+ − a−)) = a†+a+ − a†−a− .

Since a†+a+ and a†−a− are number operators having non-negative integer eigenvalues,
this proves that the orbital angular momentum L = x1p2−x2p1 has integer eigenvalues,
or integer muliples of h̄ if we do not set h̄ = 1.

In general, angular momentum may be integer or half integer, but orbital angular mo-
mentum has to be integer and can not be half integer. The proof given here is the best
(most convincing) proof we have.

3d) a†1 and a†2 excite linear oscillations in the x1 and x2 direction, respectively.

a†+ excites circular oscillations with positive angular momentum, that is, in the an-
ticlockwise direction.

a†− excites circular oscillations with negative angular momentum, that is, in the clockwise
direction.

3e) The operators a†−a+ and a†+a− commute with the Hamiltonian H = a†+a+ + a†−a− + 1

in the same way as a†2a1 and a†1a2 commute with H = a†1a1 + a†2a2 + 1.

The operators a†+a+ and a†−a− commute with each other, and hence with

H = a†+a+ + a†−a− + 1.
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The first commutator to be checked is

[K1,K2] =
i

4
[ a†−a+ + a†+a− , a†−a+ − a†+a− ] =

i

4

(

[ a†+a− , a†−a+ ] − [ a†−a+ , a†+a− ]
)

=
i

4

(

[ a†+a− , a†− ] a+ + a†− [ a†+a− , a+ ] − [ a†−a+ , a†+ ] a− − a†+ [ a†−a+ , a− ]
)

=
i

4

(

a†+ [ a− , a†− ] a+ + a†− [ a†+ , a+ ] a− − a†− [ a+ , a†+ ] a− − a†+ [ a†− , a− ] a+

)

=
i

4

(

a†+a+ − a†−a− − a†−a− + a†+a+

)

= iK3 .

The two other commutators are computed in the same way.

The fact that K1, K2 and K3 satisfy commutation relations of the angular momentum
type implies that K3 = L/2 is half integer: 0 , ±1/2 , ±1 , ±3/2 , ±2 , . . . .

Hence L must be integer, as we already noted above.

3f)

~K 2 =
1

4

(

(a†−a+ + a†+a−)2 − (a†−a+ − a†+a−)2 + (a†+a+ − a†−a−)2
)

=
1

4

(

(a†−a+)2 + a†−a+a†+a− + a†+a−a†−a+ + (a†+a−)2

−(a†−a+)2 + a†−a+a†+a− + a†+a−a†−a+ − (a†+a−)2 + (N+ − N−)2
)

=
1

4

(

2a+a†+a†−a− + 2a†+a+a−a†− + (N+ − N−)2
)

=
1

4

(

2(1 + a†+a+)a†−a− + 2a†+a+(1 + a†−a−) + (N+ − N−)2
)

=
1

4

(

2(1 + N+)N− + 2N+(1 + N−) + N 2
+ − 2N+N− + N 2

−

)

=
1

4

(

2(N− + N+) + (N+ + N−)2
)

=
N

2

(

N

2
+ 1

)

.

We know from the theory of angular momentum that the possible eigenvalues of ~K 2

are k(k + 1) with k = 0 , 1/2 , 1 , 3/2 , 2 , . . . . Each value of k defines an irreducible
representation of the su(2) Lie algebra defined by the operators K1,K2,K3, and the
dimension of this representation is 2k + 1.

The energy eigenvalues of the harmonic oscillator are En = n + 1, where n = 0, 1, 2, . . .
are the eigenvalues of the number operator N = N+ + N−. The number operators N+

and N− commute, hence they may be quantized simultaneously, and, as we know, they
have eigenvalues n+ = 0, 1, 2, . . . and n− = 0, 1, 2, . . ..

Since n = n+ + n− it follows that there are n + 1 orthogonal states with energy n + 1.
If n = 3, for example, n+ may have 4 values 0, 1, 2, 3. The above formula for ~K 2 shows
that all these state vectors are eigenvectors of ~K 2 with k = n/2. Since the degeneracy
n + 1 of the energy level is equal to the dimension 2k + 1 = n + 1 of the irreducble
representation of the Lie algebra, we conclude that all the states with a given energy
belong to one single irreducble representation of the Lie algebra.

In other words, the existence of this SU(2) symmetry group for the isotropic two di-
mensional harmonic oscillator is sufficient to explain the degeneracy of the energy spec-
trum.
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3g) Since p1 and x2 commute, and similarly p2 and x1, we have that

H ′ =
1

2m
(p 2

1 + 2mΩx2p1 + m2Ω2x 2
2 + p 2

2 − 2mΩx1p2 + m2Ω2x 2
1 )

+
1

2
m(ω2 − Ω2)(x 2

1 + x 2
2 )

=
1

2m
(p 2

1 + p 2
2 ) − Ω(x1p2 − x2p1) +

1

2
mω2(x 2

1 + x 2
2 ) = H − ΩL .

Using that H = a†+a+ + a†−a− + 1 and L = a†+a+ − a†−a− we get that

H ′ = (1 − Ω) a†+a+ + (1 + Ω) a†−a− + 1 .

The energy eigenvalues are

E = n+(1 − Ω) + n−(1 + Ω) + 1 with n+, n− = 0, 1, 2, . . . .

The energy level E = n+1 for Ω = 0 is split when Ω 6= 0 so that there is no degeneracy
left.

Only the third su(2) generator K3 = L/2 commutes with H ′, hence the symmetry group
is reduced from SU(2) to the two dimensional rotation group SO(2).

3h) The Foucault pendulum rotates because the Earth rotates, of course. We may blame
the Coriolis force which makes linear motion deviate towards the right on the northern
hemisphere. What more is there to say?

The Hamiltonian

H ′ = h̄(ω − Ω) a†+a+ + h̄(ω + Ω) a†−a− + h̄ω ,

with h̄ and the oscillation frequency ω made visible again, suggests an unusual way to
understand the rotation of the oscillation plane of the pendulum.

We see from H ′ that the two independent periodic motions of the pendulum, in the
reference frame rotating with an angular frequency Ω, are an anticlockwise circular
oscillation with angular frequency ω−Ω and a clockwise circular oscillation with angular
frequency ω+Ω. The most general classical motion is a superposition of the two circular
oscillations,

x1(t) = A cos((ω − Ω)t + 2α) + B cos((ω + Ω)t + 2β) ,

x2(t) = A sin((ω − Ω)t + 2α) − B sin((ω + Ω)t + 2β) ,

with arbitrary amplitudes A,B and arbitrary phases α, β. The best possible approxi-
mation to a linear oscillation is when A = B, then

x1(t) = 2A cos(Ωt − α + β) cos(ωt + α + β) ,

x2(t) = −2A sin(Ωt − α + β) cos(ωt + α + β) .

When ω >> Ω it seems reasonable to describe this motion as an oscillation with angular
frequency ω in a plane rotating in the clockwise direction with angular frequency Ω.
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