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Problem 1. (Points: 10+10+10+10 = 40)

A classical system of N particles is described by specifying a set of generalized coordinates {qi}
and generalized momenta {pi}, where i = 1, ..N . The dynamics of qi and pi is governed by Hamil-
ton’s equations

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
; Ȧ ≡ dA

dt

where H is the Hamiltonian of the system, H = H({qi}, {pi}). A collection of N copies of a system
with the same Hamiltonian H, but in N different states, is called an ensemble. Furthermore, we
define a phase-space as a space spanned by (q, p) = ({qi}, {pi}). From N initial states at t = 0, the
ensemble evolves in phase-space according to Hamilton’s equations.

a Show that points in (q, p), where each point describes one of the N systems in phase-space,
do not cross or disappear.

b For a very large number N , we may consider a density ρ = ρ(t, {qi, pi} of points in phase-space as
a continuous function of its variables. Use the result of a to show that there is a continuity equation
for ρ given by

dρ

dt
≡ ∂ρ

∂t
+ ~∇ · (ρ~v) = 0,

where ~∇ is a gradient in phase-space (q, p) and ~v ≡ (q̇, ṗ) is a velocity in phase-space.

c Use Hamilton’s equations to show that the continuity equation for ρ may be written on the form

∂ρ

∂t
+ {ρ,H} = 0

where

{A,B} ≡
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

d For a stationary state, we have ∂ρ/∂t = 0. Show that in this case, we may set

ρ({qi, pi}) = ρ(H({qi, pi})).

Give a physical interpretation of ρ. Explain how this equation facilitates a computation of macro-
scopically measurable quantities from a microscopic description of a system given by H.
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Problem 2. (Points: 10+10+10+10=40)

A spin-dimer is a composite object of two spins living on adjacent sites on a lattice. In this problem
we will consider a system of Nd classical spin-dimers on a two-dimensional square lattice in a uniform
external magnetic field B. The spins we will consider are Ising spins σi = ±1. The Hamiltonian of
a single spin-dimer is given by

H = −Jσ1 σ2 −B (σ1 + σ2)

where σ1, σ2 are the values of the two spins in the dimer. We assume that there are no interactions
between different spin-dimers. The total number of spins is Ns = 2Nd. Moreover, J is the strength
of the spin-spin coupling within the dimer.

a Show that for any spin-system with the Hamiltonian

H = −
∑
i,j

Jijσiσj −B
∑
i

σi,

the enthalpy He = 〈H〉 and the uniform magnetization M =
∑
i〈σi〉 are given by

He = −∂ lnZ

∂β

M =
∂ lnZ

∂βB

where Z =
∑
{σi} exp(−βH) is the prescribed-B partition function of the system (Gibbs ensemble).

b Compute the enthalpy He and the specific heat CB of the dimer-system.

c Compute the uniform magnetization M and uniform isothermal magnetic susceptibility χ per
spin of the dimer-system.

d Consider now the case J < 0. Compute χ at low temperatures for this case, and give a short
physical interpretation of the result.
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Problem 3. (Points: 10+10+10+10=40)

Quite recently, a new type of three-dimensional solid state systems (so-called topological insula-
tors) have been predicted and found that are electrical insulators in their interior (bulk), but they
feature very robust metallic quantum states on their surface. These surface states may be described
as ultra-relativistic fermions living in two dimensions, d = 2, where we may ignore Newtonian forces
between the particles. The states are specified by a quantum number k = (kx, ky) and the energy
of such a surface state is εk = h̄c|k|. Here, h̄ = h/2π, h is Planck’s constant, β = 1/kBT , kB is
Boltzmann’s constant and T is temperature. Finally, c is the velocity of the particle. The density of
states g(ε) =

∑
k δ(ε− εk) of the surface states is given by

g(ε) =
A

(hc)2
ε; ε > 0

The grand canonical partition function Zg for this system, contained on a flat surface of area A with
pressure p is given by

Zg =
∏
k

(
1 + z e−βεk

)
= eβpA

where z = eβµ and µ is the chemical potential of the system. We also introduce the surface density
ρ = 〈N〉/A where 〈N〉 is the average number of particles in the system.

a Show that the pressure and density may be written as a power series in z

βp =
1

λ2

∞∑
l=1

blz
l

ρ =
1

λ2

∞∑
l=1

l blz
l

and give expressions for bl and λ, and a physical interpretation of λ. (Hint: bl only depends on l and
no other parameters of the system.)

b Show that the pressure, to second order in ρ, may be written

βp = ρ+B2 ρ
2 + ....

and give an expression for B2. (If you did not find bl in a, express B2 in terms of b1, b2.) Explain on
physical grounds what the sign of B2 should be.

c Under what conditions does it make sense to truncate the series at second order in ρ?

d Compute the pressure as a function of ρ at T = 0.
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Formulae that might be useful:

Partition function in the canonical ensemble:

Z = e−βF

Partition function in the Gibbs ensemble:

Z = e−βG

Partition function in the grand canonical ensemble:

Zg = eβpV

Specific heat at constant magnetic field B:

CB =

(
∂He

∂T

)
B

Uniform isothermal magnetic susceptibility:

χ =

(
∂M

∂B

)
T

〈N〉 =
∂ lnZg
∂(βµ)

.

〈O〉 =
1

Z

1

N !hdN

∫
..
∫
dΓ O e−βH .

∑
k

F (εk) =
∫ ∞
−∞

de g(e) F (e)

g(e) ≡
∑
k

δ(e− εk)

∑
k

=
V

(2π)d
Ωd

∫ ∞
0

dk kd−1

∫
dνr F (|r|) = Ων

∫
dr rν−1 F (r); Ων =

2πν/2

Γ(ν/2)∫ ∞
−∞

dx x2n e−αx
2

=

(
− d

dα

)n√
π

α

Γ(z) ≡
∫ ∞
0

dx xz−1 e−x

Γ(z + 1) = z Γ(z)
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ζ(z) ≡
∞∑
l=1

1

lz

η(z) ≡
∞∑
l=1

(−1)l−1

lz∫ ∞
0

dx
xz−1

ex − 1
= ζ(z) Γ(z)∫ ∞

0
dx

xz−1

ex + 1
= η(z) Γ(z)∫ a

0
dx xν−1 e−x

ν

=
1

ν

∫ aν

0
du e−u∫ ∞

0
dx x e−x = 1

ln(1 + x) =
∞∑
l=1

(−1)l−1

l
xl

Generalized Equipartition Principle:

Let the Hamiltonian of a system be given by H = α|q|ν + H
′
. Here q is a generalized coordinate or

momentum which does not appear in H
′
. Let the partition function be given by

Z =
∫
dq
∫
dΓ

′
e−βH ,

such that we have

〈α|q|ν〉 =
1

Z

∫
dq
∫
dΓ

′
α|q|ν e−βH .

Then we have

〈α|q|ν〉 =
kBT

ν
.

Three-dimensional volume element in spherical coordinates:

d3r = dΩ r2dr; dΩ = dθ sin θ dφ

Here, θ is a polar angle and φ is an azimuthal angle.


