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This solution consists of 5 pages.

Problem 1. Spin in magnetic field
A particle with mass m, charge q and spin S in a magnetic field B has an energy contribution

Hspin = −g
( q

2m

)
S ·B, (1)

where g is a dimensionless number called the gyromagnetic ratio of the particle (often referred to as the “g-factor”).
It must not be confused with the degeneracy factor which has also been denoted g (the latter is usually the number
of spin states, 2s+ 1). Since spin is quantized in integer or half-integer units of ~ it is convenient to rewrite,

g
( q

2m

)
S ·B = g

(
|q|~
2m

)
Bsz , (2)

where B = |B| and sz = −s,−s+ 1, . . . , s is the spin component in the qB-direction in units of ~. For electrons in
empty space g = 2 to good approximation, and q = −e with e = 1.602 176 46 · 10−19 C the positron charge. The
combination

µB ≡
e~

2me
= 9.274 009 15× 10−24 J/T. (3)

is called the Bohr magneton.

a) Write down the partition function for a single electron spin in a magnetic field B in empty space at temperature

T . I.e., ignore the translation degrees of freedom and consider only the Hamiltonian (1).

The canonical partition function

Z =
∑

sz=±1/2

eβgµBBsz = 2 cosh

(
1

2
gβµBB

)
. (4)

b) What is the mean value 〈sz〉 and standard deviation σ(sz) ≡
√

Var(sz) of sz in this case?

〈sz〉 = Z−1
∑

sz=±1/2

sz eβgµBBsz =
1

2 cosh
(
1
2gβµBB

) × sinh

(
1

2
gβµBB

)

=
1

2
tanh

(
1

2
gβµBB

)
. (5)

Since the electron has a negative charge, q = −e, the spin 〈sz〉 points in the direction opposite
to the magnetic field B. Since s2z = 1

4 we find

Var (sz) = 〈s2z〉 − 〈sz〉2 =
1

4

[
1− tanh2

(
1

2
gβµBB

)]
=

1

4 cosh2
(
1
2gβµBB

) .
I.e.

σ(sz) =
1

2 cosh
(
1
2gβµBB

) . (6)
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c) Assume a temperature T = 300 K, and that 〈sz〉 = 1
100

s. What is the value of B?

Boltzmann constant: kB = 1.380 653 × 10−23 J/K

We may use the approximation tanhx = x+O(x3) for small x to find 1
2gβµBB = 1

100 . I.e.,

B =
kBT

50 g µB
=

1.380 653× 10−23 × 300

50× 2× 9.274 009× 10−24
T = 4.466 201 T, (7)

which is a rather strong field.

d) Write down the partition function ZN for N = 106 independent electron spins in a volume V = 10−18 m3 =

1 µm3. I.e., ignore interactions between the spins, the translation degrees of freedom, and also the Fermi-Dirac

statistics of electrons.

Since all spins are considered independent,

ZN = ZN = Z106 , (8)

with Z given by equation (4).

e) The average magnetization per volume unit is defined as

M =
1

βV

∂

∂B
lnZN (9)

Calculate this quantity for the system of point d), assuming the conditions of point c).

M =
1

βV

∂

∂B
lnZN =

N

βV

∂

∂B
ln cosh

(
1

2
gβµBB

)
=
N

V

1

2
g µB tanh

(
1

2
gβµBB

)
=

106

10−18
× 9.274 009× 10−24 × 1

50

J

T m3 = 0.185 480
J

T m3 (10)

f) How large are the relative fluctuations in the magnetization in this case?

The microscopic magnetization is the random quantity

Mz =
1

V

1

2
g QµB

∑
i

s(i)z , (11)

where Q is the particle charge in units of the positron charge, and s
(i)
z is the spin of particle

i in the direction of B. We have

M = 〈Mz〉 =
1

V

1

2
g QµB N 〈sz〉,

and

〈
M2

z

〉
=

(
1

V

1

2
g QµB

)2
〈∑

i,j

s(i)z s(j)s

〉
= 〈Mz〉2 +

(
1

V

1

2
g QµB

)2 ∑
i

[
〈s(i) 2z 〉 − 〈s(i)z 〉2

]
.

I.e.,

Var (Mz) ≡
〈
M2

z

〉
− 〈Mz〉2 =

(
1

V

1

2
g QµB

)2

N Var (sz) .

A good measure of the relative fluctuations is

σ (Mz)

〈Mz〉
=

√
Var (Mz)

〈Mz〉
=

1√
N

√
Var(sz)

〈sz〉
=

1√
N

1

sinh 1
2gβµBB

=
1

1000
× 100 = 0.1. (12)
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g) The magnetization of the system will give rise to an induced magnetic field,

Bind = µ0 M , (13)

where |M | = M of equation (9).

1. What is the ratio |Bind| / |B| in this case?

From the previous results we find

|Bind| / |B| = 4π × 10−7 × 0.185 480

4.466 201
= 5.2× 10−8. (14)

2. Does Bind point in the direction of B, or opposite to it?

It is implicit from equation (9) that B is defined to point in the direction of B (which
is the case), but this can be deduced from equation (2). Since derivation with respect
to B gives a positive result it must be that Bind points in the direction of B.

3. Would Bind point in the direction of B, or opposite to it, if the negatively charged electrons were

replaced by positively charged positrons?

The partition function is the same for electrons and positrons. Hence Bind will point in
the direction of B for positrons also.

Comment: For a particle with negative charge Q the average spin 〈sz〉 will point
opposite to B. But since the contribution to magnetization is proportional to Q 〈sz〉
the sign of Q does not matter.

Vacuum permeability: µ0 = 4π × 10−7 T2 m3/J.

Problem 2. Numerical computation of second virial coefficient
The Lennard-Jones potential

VLJ(r) =
a

r12
−

b

r6
, r = |r|, (15)

is often used for modelling interactions between neutral atoms or molecules. In this problem you should prepare for
numerical computation of the second virial coefficient,

B2(T ) =
1

2

∫
d3r

[
1− e−βVLJ(r)

]
, 0 (16)

for a set of temperatures T .

a) What are the physical dimensions of B2(T ), and the parameters a and b?

B2 has dimension m3, a must have dimension J m12, and b must have dimension J m6.

b) Use the parameters a and b to define suitable units of energy E0, temperature T0 and length r0, so that your

numerical integral will involve only dimensionless quantities τ ≡ T/T0 and x = r/r0.

A natural unit of energy is
E0 = b2/a, (17)

corresponding to a natural unit of temperature

T0 = E0/kB . (18)

A natural unit of length is

r0 = (a/b)
1/6

. (19)

With x = r/r0 and τ = T/T0 the virial coefficient becomes

b2(τ) ≡ 1

2πr30
B2(τT0) =

∫ ∞
0

x2 dx
[
1− e(x

−6−x−12)/τ
]
. (20)

It may be convenient to introduce another integration variable, y = x−6, to obtain the
equivalent form

b2(τ) =
1

6

∫ ∞
0

dy

y3/2

[
1− e(y−y

2)/τ
]
. (21)
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c) Depending on the quality of your numerical integration routine you may have to restrict the integration range

to xmin ≤ x ≤ xmax.

1. Estimate suitable choices for xmin and xmax.

For small x (large y) the exponential becomes neglectible small. A safe lower limit is
f.i. to choose xmin where the exponential is equal to 10−16. I.e., so that(

ymax −
1

2

)2

=
1

4
+ 16τ ln 10,

ymax =
1

2

(
1 +
√

1 + 64τ ln 10
)
,

xmin =

[
1

2

(
1 +
√

1 + 64τ ln 10
)]−1/6

. (22)

For large x (small y) we may expand the exponential in a power series of its argument,
and integrate term by term. A simple choice is to take xmax so large that only the
x−6-term in the expansion is important. I.e., so that the next order term,∣∣∣∣(1

τ
− 1

2τ2

)∣∣∣∣ ∫ ∞
xmax

x2 dx
1

x12
=

∣∣∣∣(1

τ
− 1

2τ2

)∣∣∣∣ 1

9x9max

≤ 10−16, (23)

which can be solved for xmax (with use of the equal sign).

2. Estimate the contributions to the integral from the integration ranges 0 ≤ x ≤ xmin and xmax ≤ x <∞.

The contribution from the interval 0 < x ≤ xmin becomes 1
3x

3
min = 1

3 y
−1/2
max .

The contribution from the interval xmax ≤ x <∞ becomes − 1
3τ x
−3
max = − 1

3τ y
1/2
min.

Remark: The Python numerical integration routine scipy.integrate.quad is able to
handle the integral (21) without introduction of ymin and ymax, but it complains about slow
convergence when τ becomes small.

Problem 3. Quantum magnetization
The one-particle Hamiltonian for an electron (charge q = −e) in a magnetic field is

H =
1

2me
(p + eA)2 − gµBBsz , (24)

where B = ∇×A. After quantization one finds the eigenenergies of this system to be

ε =
1

2me
p2z +

(
n+

1

2

)
εa + sz εb, with sz = ±

1

2
and n = 0, 1, . . . . (25)

Here εa = µBB and εb = 1
2
gµBB. In empty space εa = εb to good approximation. However, this model is also

used for electrons in metals and semiconductors with the electron mass me replaced by an effective mass m∗e , and a
different g-factor (both material dependent). The degeneracy of each state with fixed pz , n, and sz is eBA/h where
A is the area normal to the magnetic field. The grand partition function for this system becomes

βp =
ln Ξ

V
=
eB
√

2me

h2

∑
sz=±1/2

∞∑
n=0

∫ ∞
0

dεz√
εz

ln
{

1 + e−β[εz+(n+1/2)εa+szεb−µ]
}

(26)

a) Show that the partition function (26) can be written as

βp =

∞∑
L=1

(−1)L+1

L
eLβµ ×

eB
√

2me

h2
×

×
∑

sz=±1/2

e−szLβεb
∞∑
n=0

e−(n+1/2)Lβεa

∫ ∞
0

dεz√
εz

e−Lβεz . (27)

We expand the logarithm in a series, using the formula

ln(1 + x) =

∞∑
L=1

(−1)L+1

L
xL, (28)

with x = e−β[εz+(n+1/2)εa+szεb−µ].
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b) Perform the summations of sz and n, and the integration over pz in equation (27).

The summation over sz gives a factor 2 cosh (Lβεb/2).

The summation over n gives a factor [2 sinh (Lβεa/2)]
−1

.

The integration over pz gives a factor (Lβ)
−1/2

Γ
(
1
2

)
= (πkBT/L)

1/2
.

Since εa = e~B
2me

we may write

eB

2 sinh (Lβεa/2)
=

2πmekBT

Lh

(Lβεa)

sinh (Lβεa/2)

to obtain

βp =
1

λ3

∞∑
L=1

(−1)L+1

L5/2
eLβµ × 2 cosh (Lβεb/2)× (Lβεa/2)

sinh (Lβεa/2)
, (29)

where λ = h/
√

2πmekBT is the thermal de Broglie wavelength.

c) Consider the limit B → 0 in your results of point b). Do you get back the result for an ideal electron gas?

Since εa and εb is proportional to B they will also go to 0 as B → 0. In this limit the factor
from sz-summation, 2 cosh (Lβεb/2)→ 2, which is the correct degeneracy factor for a spin- 12
particle. Since further the factor from n-summation, (Lβεa/2) [sinh (Lβεa/2)]

−1 → 1, we get
back the correct fugacity expansion for an ideal non-relativistic spin- 12 Fermi gas.

d) The average magnetization per volume is here given by the expression

M =

(
∂p

∂B

)
β,µ

. (30)

Calculate this expression to first order in the fugacity z = λ−3 eβµ, where λ = h2/
√

2πkBTme is the thermal

de Broglie wavelength of the electron. You may assume the quantity u ≡ βµBB to be small, and calculate M

to first order in u only.

To first order

βp = ρ =
1

λ3
eβµ × 2 cosh (gβµBB/4)× (βµBB/2)

sinh (βµBB/2)

≈ 2

λ3
eβµ

{
1 +

(
g2

8
− 1

3

)
(βµBB/2)

2
+ · · ·

}
,

which gives

M =
1

β

∂

∂B
βp =

2

λ3
eβµ ×

(
g2

8
− 1

3

)
1

2
βµ2

BB

=
1

2
βρ

(
g2

8
− 1

3

)
µ2
BB. (31)

e) For which values of the electron g-factor is the system paramagnetic, and for which values is it diamagnetic?

We see from equation (31) that the system is paramagnetic for g2 > 8
3 (i.e. g > 1.633 . . .)

and diamagnetic for g2 < 8
3 .

Given: Some of the formulae below may be of use in this exam set

(1− x)−1 =
∞∑
L=0

xL, (32)

ln (1 + x) =

∞∑
L=1

(−1)L+1

L
xL, (33)

∫ ∞
0

dt
√
t

e−t =
√
π. (34)


