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Problem 1. Particles in a spherical volume

A system of N classical non-relativistic particles is confined to a spherical (3-dimensional) volume with “soft” walls,
described by the Hamiltonian

H =
N∑
i=1

1

2m
p2
i + ε0

(
x2
i

r20

)n
, (1)

where ε0 is a positive constant, r0 is a length characterizing the radius of the sphere, and n is a positive integer.

a) Write down the canonical partition function Z for this system at temperature T .

Since all particles have the same finite mass m it is very likely that they are identical. Hence

Z =
1

N !

∫ ∏
i

d3pi d3xi
h3

e−βH =
1

h3N N !

[ ∫
d3p e−βp

2/2m

∫
d3x e−βε0(x

2/r20)
n
]N

. (2)

b) Calculate the internal energy U = 〈H〉 and heat capacity C for this system.

Since we have

〈H〉 = − 1

Z

∂

∂β
Z = − ∂

∂β
lnZ,

we only need to factor out the β-dependence of the integrals. As simple way to do this is by
introducting new integration variables, π = β1/2p and ξ = β1/2nx. Since d3p = β−3/2d3π
and d3x = β−3/2nd3ξ this gives

Z = β−3N/2−3N/(2n) Z̄,

where Z̄ does not depend on β. It follows that

〈H〉 =
3

2

(
1 +

1

n

)
N

∂

∂β
lnβ =

3

2

(
1 +

1

n

)
NkBT, (3)

C =
∂

∂T
〈H〉 =

3

2

(
1 +

1

n

)
NkB . (4)

c) Does your result for C agree with the equipartition theorem when n = 1 or n =∞?

The case n = 1 corresponds to N three-dimensional oscillators, each contributing 3kB to the
heat capacity according to the equipartition theorem. The case n = ∞ corresponds to N
particles in a volume with hard walls, each contributing 3

2kB to the heat capacity according
to the equipartition theorem. The result (4) agrees with these statements.
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d) Calculate the mean particle density, defined as

ρ(x) =

〈
N∑
i=1

δ(x− xi)

〉
. (5)

We have

ρ(x) =
1

Z

N∑
i=1

1

N !

∫ N∏
j=1

d3pj d3xj
h3

δ(x− xi)e−βH .

Due to the factorized form of the integrand most factors of the integral cancels against
identical factors in Z, leaving N identical contributions,

ρ(x) =
N

Z

∫
d3x1 δ(x− x1) e−βε0(x

2
1/r

2
0)
n

=
N

Z
e−βε0(x

2/r20)
n

. (6)

Here the normalization factor Z is the single uncancelled factor of Z,

Z =

∫
d3x1 e−βε0(x

2
1/r

2
0)
n

=

(
1

βε0

)1/2n
4π

2n
r3
0

∫ ∞
0

dt

t
t3/2n e−t =

(
1

βε0

)1/2n
4π

2n
r3
0 Γ

(
3

2n

)
.

(7)

Note that (βε0)
1/2n → 1, 1

2nΓ
(

3
2n

)
→ 1

3 , and Z → 4π
3 r

3
0 when n→∞.

Next assume the particles to have charge Q measured in units of the positron charge e, and that the system is
exposed to a magnetic field B = ∇×A. This implies that we must make the substitution

pi → pi +QeA(xi) (8)

in the Hamiltonian (1).

e) What is the effect of this magnetic field on the classical partition function Z?

There is no effect of a magnetic field in classical statistical mechanics. This is known as
the Bohr–van Leuween theorem (pointed out by Niels Bohr in his doctoral dissertation of
1911 — before the advent of quantum mechanics). A simple proof is that we may introduce
new momentum integration variables, πi = pi +QeA(xi) in the partition function integrals,
thereby removing every trace of the magnetic field from the integrand.

The Gamma function:

Γ(ν) =

∫ ∞
0

dt

t
tν e−t, Γ(1 + ν) = ν Γ(ν), (9)

Γ(1) = 1, Γ(
1

2
) =
√
π, Γ(ν) = ν−1 + · · · when ν → 0. (10)

Problem 2. Monte-Carlo simulation of a thermal system

Here you should to prepare for a numerical simulation of the system discussed in the previous problem, for the case

of N = 1 and n = 2. We further simplify the system to be one-dimensional.

a) Write down the classical equations of motion dictated by the Hamiltonian (1).

After reduction to one space dimension one obtains

ẋ =
∂H

∂p
=

p

m
, (11)

ṗ = −∂H
∂x

= −2nε0

r0

(
x2

r2
0

)n−1

x. (12)

Remark: The three-dimensional version of these equations is not much different,

ẋ =
p

m
, (13)

ṗ = −
2nε0

r0

(
x2

r20

)n−1

x. (14)
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b) Find suitable units for time and length so that the equations of motion can be written in terms of dimensionless

variables.

It seems obvious that r0 must be a suitable unit of time. I.e., we write x = r0ξ with ξ

dimensionless. It follows from equation (1) that ε0 has dimension energy, i.e. that
(
ε/mr2

0

)−1/2

has dimension time and could serve as a suitable unit of time. However, it seems that

t0 =

√
mr0

2nε0
(15)

is a slightly better choice. We write t = t0τ with τ dimensionless, so that d
dt = 1

t0
d
dτ . A

natural unit of momentum then is p0 = mr0
t0

. Hence we write p = p0η with η dimensionsless.
This leads to the dimensionless equations

d

dτ
ξ = η, (16)

d

dτ
η = −ξ2n−1. (17)

Remark: The fastest way to solve this problem, completely acceptable (in fact the
recommended one when time is scarce), is to say that we may choose units for length so that
r0 = 1, for mass so that m = 1, and for energy so that 2nε0 = 1.

c) How would you discretize the differential equations for a numerical solution of the problem?

We sample the function at discrete times τk = k∆τ , and approximate the time derivative
with the discrete difference,

d

dt
ξ(τ)

∣∣∣∣
τ=k∆τ

=
ξk+1 − ξk

∆τ
, with ξk ≡ ξ(k∆τ), (18)

and similar for η(τ). This leads to the difference equations

ξk+1 = ξk + ∆τ ηk, (19)

ηk+1 = ηk −∆τ ξ2n−1
k . (20)

which can be solved iteratively.

d) To simulate temperature one has to introduce additional fluctuating and a damping forces. Indicate how this

should be done.

In addition to the force −∂H∂x we should add a dissipative (damping) force Γ p and a completely
random (fluctuating) force F . In dimensionless form this changes the difference equations to

ξk+1 = ξk + ∆τ ηk, (21)

ηk+1 = ηk −∆τ ξ2n−1
k − γ∆τ ηk +

√
∆τfk, (22)

where the fk’s are random numbers generated independently for each k, and γ is a dimen-
sionless parameter.

Hamilton’s equations:

ẋα =
∂H

∂pα
, ṗα = −

∂H

∂xα
. (23)
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Problem 3. Quantum statistics of thermal radiation

The eigen-energies for the free radiation field can be written

E =
∑
k,r

~ωkN(k, r) (24)

where ωk = c |k|, and where N(k, r) = 0, 1, . . . is the occupation number of the state with wavevector k and
polarization r. We have subtracted the zero-point energy. With av volume V and periodic boundary conditions the
allowed values for k lie on a lattice,

k =
2π

V 1/3
(nx, ny , nz) with all n’s integer. (25)

a) Show that the partition function for this system can be written

lnZ = −
∑
k,r

ln
(

1− e−β~ωk

)
. (26)

Background: The following general background was not expected as part of the solution;
it is included as a review of the concepts involved.

The quantum partition function can in general be written

Z =
∑
E

e−βE ,

where the sum runs over all possible eigenenergies E. You should be familiar with the fact
that the eigenstates are usually labeled by several quantum numbers, like n (the principal
quantum number), ` (the total angular momentum quantum number) and m (the magnetic
quantum number — labels the z-component of the angular momentum vector) in atomic
physics. Likewise the states of a 3-dimensional harmonic oscillator may be labelled by non-
negative integer quantum numbers Nx, Ny, and Nz describing excitations of the oscillator in
respectively the x-, y-, and z-directions. In the latter case the eigen-energies of the system is

E = ENx,Ny,Nz = ~ (ωxNx + ωyNy + ωzNz) + E0

=
∑

α=x,y,x

~ωαNα + E0

where the second term of each line is the zero-point energy E0 = 1
2~
∑
α=x,y,x ωα. Ignoring

the zero-point energy, the partition function can be written

Z =
∑

Nx,Ny,Nz

e−βENx,Ny,Nz =
∑

Nx,Ny,Nz

e−β~(ωxNx+ωyNy+ωzNz)

=

∞∑
Nx=0

e−β~ωxNx
∞∑

Ny=0

e−β~ωyNy
∞∑

Nz=0

e−β~ωzNz

=
∏

α=x,y,z

∞∑
Nα=0

e−β~ωαNα =
∏

α=x,y,z

1

(1− e−β~ωα)
.

I.e., since the logarithm of a product is the sum of logarithms of its factors,

lnZ = −
∑

α=x,y,z

ln
(
1− e−β~ωα

)
.

The eigenstates of the radiation field is like those of the 3-dimensional oscillator, except
that we don’t have 3 but infinitely many “directions” — each “direction” labeled by a
wavenumber k and a polarization r (which together specifies a possible propagation mode of
the electromagnetic field). The occupation number N(k, r) then specifies the excitation of
that mode.
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Solution: We have

Z =
∏
k,r

∞∑
N(k,r)=0

e−β~ωk =
∏
k,r

1

(1− e−β~ωk)
, (27)

so that
lnZ = −

∑
k,r

ln
(
1− e−β~ωk

)
. (28)

b) Explain why the the average occupations numbers can be written as

〈N(k, r)〉 = −
1

2

1

β~
∂

∂ωk
lnZ. (29)

Since the occupation probabilities of differents modes are independent we have

〈N(k, r)〉 =
1

Z(k, r)

∞∑
N(k,r)=0

N(k, r) e−β~ωkN(k,r), with

Z(k, r) =

∞∑
N(k,r)=0

e−β~ωkN(k,r).

I.e.,

〈N(k, r)〉 = − 1

Z(k, r)

∂

β~∂ωk
Z(k, r) = − ∂

β~∂ωk
lnZ(k, r) = −1

2

1

β~
∂

∂ωk
lnZ. (30)

There are two terms in lnZ which depends on ωk, one for each value of r. The factor 1
2

compensates for this.

c) Find an explicit expression for 〈N(k, r)〉.

We find

〈N(k, r)〉 =
∂

β~∂ωk
ln
(
1− e−β~ωk

)
=

1

(eβ~ωk − 1)
. (31)

d) To evaluate many physical quantities explicitly in the limit V →∞ one makes the substitution∑
k,r

F (k, r)→ VN
∑
r

∫
d3k F (k, r), (32)

valid for continuous functions F (k, r).

Explain the origin of this substitution. What is the dimensionless number N?

The vector k runs over the points of a cubic lattice, with volume

∆v =
(2π)3

V
(33)

of each elementary cell. As V becomes large the points becomes very close together, and we
may approximate the sum by an integral,∑

k,r

F (k, r) =
V

(2π)3

∑
r

∑
k

∆v F (k, r) ≈ V

(2π)3

∑
r

∫
d3k F (k, r), (34)

where we in the last step have interpreted the sum over k as a Riemann approximation to
the integral. As V becomes very large this approximation becomes very good.

We have found that

N =
1

(2π)3
. (35)
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e) In most of the universe the photons have a temperature T = 2.725 K.

How many photons N =
∑

k,r〈N(k, r)〉 are there on average per m3?

We find

N = 2
V

(2π)3

∫
d3k

eβ~ωk − 1
= 2

V

(2π)3
× 4π

∫ ∞
0

k2dk

eβ~ck − 1

=
1

π2
V

(
kBT

~c

)3 ∫ ∞
0

x2dx

ex − 1
=

2

π2
ζ(3)V

(
kBT

~c

)3

= 4.105× 108. (36)

Some physical constants, and an integral:

~ = 1.054 571 628× 10−34 Js, kB = 1.380 6503× 10−23 J/K, c = 299 792 458m/s (37)∫ ∞
0

x2dx

ex − 1
= 2ζ(3) ≈ 2.404 . . . (38)


