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Problem 1. Qualitative explanations
Explain the following topics briefly

a) Central limit theorem.

In a simple form the central limit theorem states that the probability distribution of a sum
(or average) of N independent , identically distributed random variables with finite mean and
variance will approach a normal distribution (gaussian or bell-curve) when N becomes large.
The condition of identical distributed variables may be relaxed, provided the sums of mean
values and variances behave “properly” (like remaining finite).

One consequence of the central limit theorem is that the average of a large sample of N
independent outcomes, drawn from a distribution with finite mean µ and variance σ2, becomes
normal distributed around µ with a variance σ2/N .

Remark: There are extensions of the central limit theorem to cases where the limiting distribution is

different from a gaussian.

b) Ergodic hypothesis.

The ergodic hypothesis postulates that the time average of physical quanties in a closed
Hamiltonian system is equal to a phase space average,

〈f〉 = lim
T→∞

1

T

∫ T

0

dt f(q,p) = Ω(E)−1
∫ ∏

n

dqndpn f(q,p) δ(H(q,p)− E). (1)

Remark 1: Here q denote the collection of all position variables, and p the collection of all momentum
variables. The normalization constant Ω(E), the microcanonical partition function, is chosen so that the
equality is valid for f = 1. The right hand side says that the phase space average should be taken with
respect to the Liouville measure (i.e.

∏
n dqndpn ) restricted to the constant energy surface.

Remark 2: The great success of statistical mechanics applied to physical systems in thermal equilibrium

provides strong empirical support for the ergodic hypothesis, even for quite short times T . At least for large

systems, and a restricted class of functions f .

c) Equipartition theorem.

Loosely speaking the equipartition theorem says that each quadratic term in the Hamiltonian
contributes 1

2kB to the heat capacity of a classical system.

Caveats: (i) The counting of terms assumes that the quadratic Hamiltonian has been brought to diagonal

form by a canonical transformation. (ii) Terms occuring in the (diagonalized) quadratic Hamiltonian must

not occur in the rest of the Hamiltonian.
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d) Classical diamagnetism.

According to the Bohr – van Leeuwen theorem classical diamagnetism does not exist. The
theorem is easily proven by shifting integration variables, p′n = pn−qA(xn), in the momentum
integrals of the canonical partition function.

Remark 1: Why say that classical diamagnetism does not exist? We could equally well say that classical
magnetism does not exist. Period. The chosen formulation is presumably due to the fact that the correponding
quantum systems are weakly diamagnetic.

Although one often model magnetic materials using “classical” spins, it seems difficult to model such spins
themselves in terms of classical particles in such a way that the Bohr – van Leeuwen theorem does not apply.

Remark 2: In diamagnetic materials there will be induced a magnetic field opposite to the external

field; such materials will have a relative magnetic permeability less than 1. The opposite are paramagnetic

materials where the induced magnetic field is aligned with the external field; such materials will have a relative

magnetic permeability greater than 1. One also talks about ferromagnetic materials; they may be said to be

extremely paramagnetic, with a non-linear response and may magnetize spontaneously. The opposite are

anti-ferromagnetic materials which may exhibit staggered magnetism (i.e., with a spontaneous magnetic field

pointing in one directions on even sites of a bipartite lattice, and in the opposite direction on odd sites).

e) Thermal de Broglie wavelength.

Quantum particles with momentum p are associated with a de Broglie wavelength λ = h/p.
Crudely speaking the thermal de Broglie wavelength is the average λ of particles in thermal
equilibrium. Such particles with mass m have kinetic energy 〈K(p)〉 = 〈 1

2mp2〉 = 3
2kBT

(nonrelativistically). This provides an estimate λ−2dB ∼ mkBT/h2. A suitable precise definition
is to say that

λ−3dB ≡
∫

d3p

h3
e−K(p)/kBT , (2)

which gives λdB = h/
√

2πmkBT for nonrelativistic particles.

Problem 2. Python code

Listing 1: Python code fragment

1 nPoints = 50000
2 nBins = 1000
3 qValues = numpy.linspace(0, 0.5*numpy.pi, nPoints)[1:nPoints]
4 omega = numpy.sqrt( 4*numpy.sin(qValues)**2 + 2*numpy.sin(2*qValues)**2)
5 [weights, bins] = numpy.histogram(omega, bins=nBins)
6 normalizedWeights = weights/numpy.sum(weights)

a) Explain what is done by the six lines of Python code above.

- The first two lines create two variables nPoints and nBins. We could have inserted their
values directly in the code below, but that would make the code more difficult to change
consistently.

- In the third line we first create an array of exactly nPoints equally spaced points,
starting with 0 and ending with 1

2π, and next (with the clause [n:nPoints]) define a
“view” qValues to all these points q except the first one (q = 0).

- In the fourth line we create an array omega of values

ω =

√
4 sin2 q + 2 sin2 2q (3)

This array have nPoints-1 elements.
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- In the fifth line we use the histogram function in numpy to construct a histogram of the
values occuring in omega. This function find the smallest and largest value occuring,
divides this interval into nBins subintervals, and finally counts the number of ω-values in
each subintervals. These values are returned in the array weights of length nBins. The
nBins+1 boundaries of the subintervals are returned in the array bin.

- In the sixt line we normalize the histogram so that the value of each bin can be interpreted
as the probability that ω falls in that bin.

In summary the code calculates the normalized density of states, g(ω), for a system with
dispersion relation (3).

Problem 3. Statistical mechanics of 3-level systems
Consider a system which can be in three different energy states, {E0, E1, E2}, in thermal equilibrium with a reservoir

at temperature T .

a) Write down the partition function for this system.

Z = e−βF =

2∑
k=0

e−βEk = e−βE0
(
1 + e−βε1 + e−βε2

)
, (4)

where εk = Ek − E0.

b) Calculate the internal energy of this system.

U = 〈E 〉 = − ∂

∂β
log Z = E0 +

ε1 e−βε1 + ε2 e−βε2

1 + e−βε1 + e−βε2
. (5)

c) Calculate the entropy of this system.

Since kB logZ = −kBβF = S − kBβU we find

S = kB (logZ + βU) (6)

= kB

(
1− β ∂

∂β

)
logZ

= kB

[
log
(
1 + e−βε1 + e−βε2

)
+
βε1e−βε1 + βε2e−βε2

1 + e−βε1 + e−βε2

]
. (7)

Remark 1: Note that the thermodynamic expression (6) is equivalent to the formula

S = −kB〈 logP 〉, (8)

where Pk = Z−1 e−βEk is the probability of being in state k.

Remark 2: Note that
(

1− β ∂
∂β

)
log e−βE0 = 0.
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In the upper left figure above three possible orderings of the energy levels are listed. The three other figures show

the corresponding heat capacities in random order. The temperature scale Θ is the same in all three cases (but C0

is not).

d) Which heat capacity correspond to which level ordering? Explain your choices.

To obtain a significant heat capacity C the thermal energy kBT must be large enough to
excite the system over an energy gap ∆E, but not much larger (when kBT � ∆E the states
on both sides of the gap is already populated with equal probability; hence a further increase
in temperature will not lead to a change in the internal energy from this part of the system).

For the case (a) we can first excite over a small energy gap and next over a large energy gap
(with increasing temperature). This will lead to a double hump in the heat capacity, and
must correspond to the lower left figure. (The case (c) also has a small and a large energy
gap, but for temperatures suitable for the small energy gap the state E1 is not yet populated;
hence there are no particles available to cross the gap.)

For the cases (b) and (c) we start to excite the system when kBT is comparable to the
largest energy gap, hence we get a single hump in the heat capacity. The relevant energy gap
is almost twice as large for case (c) than for case (b), hence excitation should start at about
twice the temperature, which corresponds to the upper right figure.

To summarize:

(a) corresponds to the lower left figure,

(b) corresponds to the lower right figure,

(c) corresponds to the upper right figure.
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Problem 4. Ideal bose gas
The grand partition function of an ideal gas of nonrelativistic spin-0 bosons in a volume V = L3 is

Ξ =
∏
k

(
1− eβ(µ−Ek)

)−1
, where Ek =

~2k2

2m
. (9)

With periodic boundary conditions the allowed values for kx = 2πnx
L

with nx = 0,±1,±2, · · · , and similar for ky

and kz . Assume the limit of large V , so that summations over k can be replaced by integrals.

a) Calculate the pressure βPV of this gas to second order in the parameter z ≡ eβµ.

We have

βPV = log Ξ = −
∑
k

log
(

1− eβ(µ−Ek)
)

=
large V

−V
∫

d3k

(2π)3
log
(
1− z e−βEk

)
= V

∞∑
L=1

zL

L

∫
d3k

(2π)3
e−LβEk = V λ−3dB

∞∑
L=1

zL

L5/2

≡ V λ−3dB Li5/2(z) = V λ−3dB

(
z + 2−5/2z2 + · · ·

)
. (10)

Remark 1: Here we have used the fact that the integral of k is equal to λ−3
dB at a temperature TM = T/L,

essentially by definition of the thermal de Broglie wavelength, and that this wavelength scales like T−1/2 in
the non-relativistic case, thereby leading to an additional factor L−3/2 in the sum.
Remark 2: For those who enjoy integration, or have forgotten about the slick definition of the thermal
wavelength, we may compute the integral by first introducing a scaled coordinate x so that LβEk =
Lβ~2k2/2m = x2/2. This gives

IL ≡
∫

d3k

(2π)3
e−LβEk =

(
mkBT

L~2

)3/2 ∫ d3x

(2π)3
e−x2/2 ≡

(
mkBT

L~2

)3/2

C3 with C =

∫ ∞
−∞

dx

2π
e−x

2/2,

which provides the most important information, like how IL depends on temperature T and the factor L−3/2.
A simple way to compute C is to consider

C2 =
1

(2π)2

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−(x2+y2)/2 =
1

(2π)2

∫ ∞
0

rdr e−r
2/2︸ ︷︷ ︸

1

∫ 2π

0
dφ︸ ︷︷ ︸

2π

=
1

2π
.

Hence we find that C = 1/
√

2π, and

IL =

(
2πmkBT

h2

)3/2

L−3/2 ≡ λ−3
dB L

−3/2. (11)

b) Calculate the mean particle number 〈N〉 of this gas to second order in the parameter z.

The probability PN for N particles in the system is in general

PN = Ξ−1eβµN ZN ,

which gives

〈N 〉 = Ξ−1
∞∑
N=0

NeβµN ZN =

(
∂ log Ξ

β∂µ

)
β,V

= z

(
∂ log Ξ

∂z

)
β,V

= z

(
∂βPV

∂z

)
β,V

.

In this case we find 〈N 〉 = V
∫

d3k
(2π)3

z
eβEk−z , or by inserting the expansion (10),

〈N〉 = V λ−3dB

∞∑
L=1

zL

L3/2
≡ V λ−3dB Li3/2(z) = V λ−3dB

(
z + 2−3/2z2 + · · ·

)
. (12)
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c) Calculate the fluctuations in particle number, VarN = 〈N2〉 − 〈N〉2, to second order in the parameter z.

We have in general

VarN = 〈N2〉 − 〈N〉2 =

(
∂2 log Ξ

β2∂µ2

)
β,V

=

(
∂〈N〉
β∂µ

)
β,V

= z

(
∂〈N〉
∂z

)
β,V

.

In this case we find, by inserting the expansion (12)

VarN = V λ
−3/2
dB

∞∑
L=1

zL

L1/2
= V λ

−3/2
dB

(
z + 2−1/2z2 + · · ·

)
. (13)

d) Calculate the internal energy, U = 〈E〉, to second order in the parameter z.

The fast way to solve this problem is to make use of the fact that pV = 2
3U for nonrelativistic

ideal quantum gases. Hence we have that

U =
3

2
kBT V λ

−3
dB

∞∑
L=1

zL

L5/2
≡ 3

2
kBT V λ

−3
dB Li5/2(z) =

3

2
kBT V λ

−3
dB

(
z + 2−5/2z2 + · · ·

)
.

(14)
Remark 1: Referring to obscure relations feels almost like cheating; hence we prefer to also go through the
probabilistic argument in some detail. In general the probability density for finding N particles with total
energy E in the system is

PN (E) = Ξ−1 eβµN e−βE gN (E), (15)

where gN (E) is the density of states per energy in the N-particle system. It is related to the canonical
partition function by

ZN =

∫
dE gN (E) e−βE .

It follows that

〈E 〉 = Ξ−1
∞∑
N=0

eβµN
∫

dE gN (E)E e−βE = −
(
∂ log Ξ

∂β

)
βµ

= −
(
∂ log Ξ

∂β

)
z

.

For fixed z the temperature dependence of log Ξ = βPV only occurs in the factor λ−3
dB . We find

∂

∂β
λ−3
dB =

3

2β
λ−3
dB =

3

2
kBTλ

−3
dB ,

which verifies the relation PV = 2
3
U .

e) Calculate the heat capacity at constant volume, CV , to second order in the parameter z.

As it stands this question is not completely defined. Should we increase the temperature with
a fixed particle number 〈N 〉, or with a fixed chemical potential µ, or with a fixed fugacity z,
or some combination of these possibilities? (In an exam solution – but only there – any of
these choices would be acceptable.)

For a general analysis one may write(
∂U

∂T

)
V

=

(
∂β

∂T

)
︸ ︷︷ ︸
−kBβ2

[(
∂U

∂β

)
V,z

+

(
∂U

∂z

)
V,β

(
∂z

∂β

)
V

]
. (16)

For fixed V and z the only T -dependence in U occurs in the prefactor β−1λ−3dB ∝ β−5/2,

∂

∂β
β−1 λ−3dB = − 5

2β2
λ−3dB.

Hence we find (
∂U

∂T

)
V,z

=
15

4
kB V λ−3dB

∞∑
L=1

zL

L5/2
≡ 15

4
kB V λ−3dB Li5/2(z)

=
15

4
kB V λ−3dB

(
z + 2−5/2z2 + · · ·

)
. (17)
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For fixed V and µ we find ∂z/∂β = µz = −β−1 log(1/z) z, and(
∂U

∂z

)
z,V

(
∂z

∂β

)
= − 3

2β2
V λ−3dB log

1

z

∞∑
L=1

zN

L3/2
.

This gives (
∂U

∂T

)
V,µ

= kB V λ
−3
dB

[
15

4
Li5/2(z) +

3

2
log

(
1

z

)
Li3/2(z)

]
. (18)

The results (17, 18) correspond to unconventional definitions of heat capacity, since part of
the change in U with temperature is due to an increase in particle number. A conventional
definition is to see how the internal energy change with temperature at constant particle
number or density. I.e., we require

dρ =

(
∂ρ

∂β

)
z

dβ +

(
∂ρ

∂z

)
β

dz = 0,

or
1

z

(
∂z

∂β

)
= −

(∂ρ/∂β)z
(z∂ρ/∂z)β

=
3

2β

Li3/2(z)

Li1/2(z)
. (19)

We combine this with the relations

(∂U/∂β)V,z = − 15

4β2
V λ−3dB Li5/2(z),

z (∂U/∂z)V,β =
3

2β
V λ−3dB Li3/2(z),

and equation (16) to find

CV =

(
∂U

∂T

)
V,ρ

=
3

4
kB V λ−3dB

[
5Li5/2(z)− 3Li3/2(z)2 Li1/2(z)−1

]
=

3

2
kB V λ−3dB

(
z + 5 · 2−7/2z2 + · · ·

)
. (20)

f) Use your result from point b) to express z in terms of the particle density,

ρ =
〈N〉
V

, (21)

up to second order in ρ.

We have the relation

ρ̄ ≡ ρλ3dB = z +

∞∑
L=2

L−3/2zL.

Or rewritten,

z = ρ̄−
∞∑
L=2

L−3/2zL. (22)

This gives z = ρ̄ to first order in z (or ρ̄), which can be reinserted on the right hand side of
(22) to find z to second order in ρ̄,

z = ρ̄− 2−3/2ρ̄2 + · · · . (23)

Remark 1: With ρ̄ expanded to second order in z one may find an expression for z = z(ρ̄) by solving the
quadratic equation in z. But this is not the right way to proceed; it leads to an ugly expression which is
anyway correct only to second order in ρ̄ as found in (23).

Remark 2: We may again reinsert (23) on the right hand side of (22) to find z to third order in ρ̄,

z = ρ̄− 2−3/2ρ̄2 + (2−2 − 3−3/2)ρ̄3 + · · · ,
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which may be reinserted in (23) to give to fourth order,

z = ρ̄− 2−3/2ρ̄2 +
(

2−2 − 3−3/2
)
ρ̄3 −

(
2−3 − 5 · 6−3/2 + 5 · 2−9/2

)
ρ̄4 + · · · ,

and so on. . . .

Next one may insert these expressions for z into the pressure expansion,

βP λ3dB =

∞∑
L=1

zL

L5/2
,

to obtain the virial expansion for the equation of state

βP λ3dB = ρ̄− 2−5/2ρ̄2 +
(

2−3 − 2 · 3−5/2
)
ρ̄3 −

(
3 · 2−5 − 2 · 12−1/2 + 5 · 2−11/2

)
ρ̄4 + · · · .

Similar expansions in terms of density ρ̄ can be obtained for other physical quantities, like those considered
in points c), d), e).
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