
Solution to Problem 1

1 a
N = 3

Z =
∑

σ1=±1

∑
σ2=±1

∑
σ3=±1

eβJ(σ1σ2+σ2σ3+σ3σ1)+βh(σ1+σ2+σ3)

= e3β(J+h)︸ ︷︷ ︸
σ1=1,σ2=1,σ3=1

+ eβ(−J+h)︸ ︷︷ ︸
σ1=1,σ2=1,σ3=−1

+ eβ(−J+h)︸ ︷︷ ︸
σ1=1,σ2=−1,σ3=1

+ eβ(−J−h)︸ ︷︷ ︸
σ1=1,σ2=−1,σ3=−1

+ eβ(−J+h)︸ ︷︷ ︸
σ1=−1,σ2=1,σ3=1

+ eβ(−J−h)︸ ︷︷ ︸
σ1=−1,σ2=1,σ3=−1

+ eβ(−J−h)︸ ︷︷ ︸
σ1=−1,σ2=−1,σ3=1

+ e3β(J−h)︸ ︷︷ ︸
σ1=−1,σ2=−1,σ3=−1

= e3β(J+h) + 3 eβ(−J+h) + 3 eβ(−J−h) + e3β(J−h)

Even though the exam did not ask for this, let us also check that the above result for Z agrees with
the general formula Z = λN+ + λN− , for N = 3.

Z = λ3+ + λ3−

= e3K
[(

cosh(ω) +
√

sinh2(ω) + e−4K
)3

+

(
cosh(ω)−

√
sinh2(ω) + e−4K

)3
]

= 2e3K
[
cosh3(ω) + 3 cosh(ω)

(
sinh2(ω) + e−4K

)]
= 6e−K cosh(ω) + 2e3K

(
4 cosh3(ω)− 3 cosh(ω)

)
.

Here, we have used cosh2(ω) − sinh2(ω) = 1 to eliminate sinh2(ω) in favor of cosh2(ω). Using cosh(ω) =
(eω + e−ω)/2, we find 4 cosh3(ω)− 3 cosh(ω) = (e3ω + e−3ω)/2. Hence, we get

Z = 3e−K
(
eω + e−ω

)
+ e3K

(
e3ω + e−3ω

)
= e3(K+ω) + e3(K−ω) + 3e−(K−ω) + 3e−(K+ω).

This is the same as what we found by direct enumeration of the partition function for N = 3, setting K = βJ
and ω = βh.

1 b
In general, we have

M = 〈
N∑
i=1

σi〉

=
1

Z

∑
{σi}

N∑
i=1

σi e
−βH

=
∂

∂βh
ln(Z).

When N →∞, we have Z = λN+

(
1 + (λ−/λ+)N

)
≈ λN+ , thus

M = N
∂ lnλ+
∂βh



= N
1

λ+

∂λ+
∂ω

= N
1

eK
[
cosh(ω) +

√
sinh2(ω) + e−4K

]eK
sinh(ω) +

2 sinh(ω) cosh(ω)

2
√

sinh2(ω) + e−4K


=

N sinh(ω)√
sinh2(ω) + e−4K

= N
Γ√

1 + Γ2
.

where Γ ≡ sinh(ω) e2K = 1
2

(
eω+2K − e−(ω−2K)

)
.

m is the uniform magnetization. Increasing the uniform magnetic field h increases the alignment of the
spins (along h), such that for fixed T, J , m increases with h.

For fixed h, the system behaves differently for J > 0 and J < 0 as T is varied.

J > 0, T decreases
J > 0 promotes ferromagnetic ordering, i.e. all spins align in the same direction (up or down), i.e. uniform
magnetization. As T decreases, the spins order more and more, and m increases with decreasing T .

J < 0, T decreases
It will suffice to consider the case h > 0. J < 0 promotes antiferromagnetic ordering, i.e. neighboring spins
align in opposite direction. On the other hand, the uniform magnetic field promotes spins ordering parallel.
Hence, there is a competition between J and h in terms of spin-ordering. We must distinguish between two
cases, namely the case where J dominates h, and the opposite case where h dominates J . When J � h, and
T decreases, the spins order antiferromagnetically, and m decreases with decreasing T . When h � J , and
T decreases, the spins order ferromagnetically, and m increases with decreasing T . From the low-T limit
of the expression for m = M/N , we see that the changes in behavior of m at low T is determined by the
behavior of eω−2|K| − e−(ω+2|K|) ≈ eω−2|K|. When ω − 2|K| changes sign from positive value to a negative
value, Γ changes from a very large value to a very small value, such that m changes from 1 to a very small
value.

1 c
The model is an Ising spin-model defined on a ring with ferromagnetic nearest-neighbor (J1 > 0) and
ferromagnetic next-nearest-neighbor (J2 > 0) spin-interactions. Introducing τi = σiσi+1, we have

H = −
N∑
i=1

[J1 σiσi+1 + J2 σiσi+2]

= −
N∑
i=1

[J2 τiτi+1 + J1 τi] .

Here we have used that τiτi+1 = σi σi+1σi+1︸ ︷︷ ︸
=1

σi+2 = σiσi+2. This model is exactly the same as the one we

studied above, if we make the substitutions h → J1, J1 → J2, i.e. K = βJ2, ω = βJ1. We may therefore
take over directly the results for the partition function Z = e−βG. The Gibbs energy is then given by, in the
limit N →∞

G = −NkBT lnλ+

= −NkBT
[
K + ln

(
cosh(ω) +

√
sinh2(ω) + e−4K

)]
.



Let us now look at low temperatures βJ1 � 1, βJ2 � 1. We then have cosh(ω) +
√

sinh2(ω) + e−4K ≈ eω,

and hence ln

(
cosh(ω) +

√
sinh2(ω) + e−4K

)
≈ ω. From this, we find that

G ≈ −NkBT (K + ω)

= −N (J1 + J2) .

This is nothing but the ground state energy H when all spins are completely ordered (either up or down).
On general grounds, we have G = U − hM − TS. In this case, h = 0, so that G = U − TS. In the
low-temperature limit, the entropy-term TS is negligible, so that G is dominated by U = 〈H〉. When all
spins are ordered, σiσi+1 = 1, σiσi+2 = 1. Hence, we see from inspection directly from the expression for H
that H = −N(J1 + J2), which is the low-temperature limit of G.



Solution to Problem 2

2 a
In this case, the Hamiltonian is given in terms of a sum of single-particle Hamiltonians, and the partition
function Z therefore factorizes into a product N single-particle partition functions, as follows

Z =
1

N !h3N
ZN1

Z1 =

∫
dr

∫
dpe−βp

2/2m−βαr3

=

(
2πm

β

)3/2 ∫
dre−βαr

3

=

(
2πm

β

)3/2

Q1

Q1 =

∫
dre−βαr

3

In the Q1-integral, the integrand is isotropic, and we may perform the angular integrations with ease, leaving
us with one radial integral to perform, thus

Q1 = 4π

∫ R

0
dr r2 e−βαr

3

=
4π

3

∫ R3

0
du e−βαu

=
4π

3

1

βα

(
1− e−βαR3

)
= V

(
1− e−x

x

)
,

where we have introduced x = 3αβV/4π by substituting R3 = 3V/4π. Therefore, we have

Z =
1

N !h3N

(
2πm

β

)3N/2

V N

(
1− e−x

x

)N

=
V N

N !Λ3N

(
1− e−x

x

)N
,

where we have introduced Λ = h/
√

2πmkBT . We note that when x �, we have (1 − e−x)/x ≈ 1, whence
we have

Z =
V N

N !Λ3N
.

This is the standard well-known result for the partition function of an ideal gas, where the confining poten-
tial αr3 plays no role. This is easily understood, since when x � 1, this means that the volume is small,
such that the particles are always close to the origin. In this case, the effect of the confining potential is not
felt, and the particles exert a pressure on the walls of the container as if the confining potential were not
there.

2 b



The internal energy is given by U = 〈H〉 = −1/Z∂Z/∂β = −∂ lnZ/∂β. We thus have

U = −∂ lnZ

∂β

=
3

2
NkBT −N

∂

∂β
ln

(
1− e−x

x

)

=
3

2
NkBT −N

∂

∂x
ln

(
1− e−x

x

)
∂x

∂β

=
3

2
NkBT +N

3αV

4π

(
1

x
− 1

ex − 1

)

= 〈
N∑
i=1

p2
i

2m
〉+ 〈

N∑
i=1

αr3i 〉.

The first term is the average of the kinetic energy of the system (as per the equipartitition principle), while
the second term is the average of the potential energy term αr3i .

Let us next consider two limiting cases, namely x � 1 and x � 1. In the former case, we expect the
effect of the confining potential to be negligible, since the particles in any case are close to the origin due to
the wall-constrictions of the system.

When x� 1, we have 1/x− 1/(ex − 1) ≈ 1/2. Then we obtain

U =
3

2
NkBT +N

3αV

4π

1

2

=
3

2
NkBT

(
1 +

1

3
x

)
≈ 3

2
NkBT.

This is in accord with the intuition that for small volumes, the particles are contained close to the origin
not by the anharmonic trap, but by the walls, as if the anharmonic trap were not there.

When x� 1, we have 1/x− 1/(ex − 1) ≈ 1/x. Then we obtain

U =
3

2
NkBT +N

3αV

4π

(
1

x
− 1

ex − 1

)
≈ 3

2
NkBT +N

3αV

4π

1

x

=
3

2
NkBT +NkBT =

5

2
NkBT.

As before, the term 3NkBT/2 comes from the kinetic energy as per the equipartition principle. The term
NkBT comes from the average of the potential energy αr3, which now comes into full play since the walls
of the system effectively are moved so far out from the origin that the particles are confined to the system
not by the walls but entirely by the confining potential.

2 c
From F = U − TS and TdS = dU + pdV we have dF = −SdT − pdV , which means that p = − (∂F/∂V )T .
Since F = −kBT lnZ, we have

p = kBT

(
∂ lnZ

∂V

)
T

=
NkBT

V
+NkBT

(
−1

x
+

1

ex − 1

)
∂x

∂V︸︷︷︸
=x/V



=
NkBT

V

x

ex − 1

When x � 1, we have x/(ex − 1) ≈ 1. Therefore, in this case we have pV = NkBT , the standard form for
the ideal gas equation of state. Again, the effect of the anharmonic trap-potential is seen to vanish for small
volumes.

When x� 1, we have

p =
NkBT

V
x e−x

=
3Nα

4π
e−

3αβV
4π .

In this case, the pressure is seen to vanish exponentially with the volume as the volume increases for x� 1.
The effect of the confining anharmonic potential is felt strongly, the particles are confined to the center of
the system by this potential, and are therefore almost unable to reach the walls of the container. They
therefore exert a far smaller pressure on the walls of the container than they do in the absence of a confining
trap-potential.



Solution to Problem 3

3 a
We have

〈N〉 =
∂ lnZg
∂βµ

= −
∑
k

−e−β(εk−µ)

1− e−β(εk−µ)

=
∑
k

1

eβ(εk−µ) − 1
=
∑
k

nk.

Furthermore, we have U =
∑

k εk nk, which immediately gives

U =
∑
k

εk
eβ(εk−µ) − 1

.

3 b
Introducing the density of states g(e) and the fugacity z = eβµ, we have

〈N〉 =

∫
dε

g(ε)

eβεz−1 − 1

=

∫
dε

zg(ε)

eβε − z

=

∫
dε

zg(ε)e−βε

1− ze−βε

=

∫
dε g(ε)

∞∑
l=1

zl e−βεl.

In a similar way, we obtain the expression for U , which differs from that of 〈N〉 only by a factor ε under
the integral, thus we have

U =

∫
dε ε g(ε)

∞∑
l=1

zl e−βεl.

We have the expression for g(e) = V Kde
d−1, e g(e) = V Kde

d, with Kd = (1/2πh̄c)d(2πd/2/Γ(d/2)). Both
for 〈N〉 and U we therefore must compute sums and integrals of the form

I = V Kd

∫ ∞
0

dε εν
∞∑
l=1

zl e−βεl

= V Kd

∞∑
l=1

zl
∫ ∞
0

dε εν e−βεl

= V KdΓ(ν + 1)
∞∑
l=1

zl

(βl)ν+1
.

with ν = d− 1 for 〈N〉, and ν = d for U . We therefore obtain

〈N〉 = V KdΓ(d)
∞∑
l=1

zl

(βl)d
= V

Kd

βd
Γ(d)

∞∑
l=1

l
zl

ld+1

U = V KdΓ(d+ 1)
∞∑
l=1

zl

(βl)d+1
= V

Kd

βd
d Γ(d)

β

∞∑
l=1

zl

ld+1



In the expression for U , we have used that Γ(d+1) = d Γ(d) (given formula on the exam sheet). Comparing
with

〈N〉 = V
∞∑
l=1

l bl z
l

βU

d
= V

∞∑
l=1

bl z
l

we see that the fugacity coefficients bl are given by

bl =
Kd

βd
Γ(d)

ld+1
.

Note that bl > 0,∀l.
Furthermore, we have that βpV = lnZg while 〈N〉 = z∂ lnZg/∂z = V

∑∞
l=1 lblz

l. This means that
βpV = V

∑∞
l=1 blz

l = βU/d. Hence, we obtain U/pV = d, which is a constant independent of temper-
ature and density. The virial expansion for the internal energy of this non-interacting system (see below) is
therefore essentially the same as the virial expansion for the pressure. The physics determining the virial
coefficients for the internal energy is therefore precisely the same as the physics determining the virial-
coefficients of the pressure.

3 c
In order to proceed with the virial expansion for the internal energy U , let us for convenience introduce the
auxiliary quantity ũ = βU/V d and the density ρ = 〈N〉/V . We then have

ρ =
∞∑
l=1

l bl z
l = b1z + 2b2z

2 + ...

ũ =
∞∑
l=1

bl z
l = b1z + b2z

2 + ...

from which we find

ũ− ρ = −b2z2 + ... (1)

From the fugacity expansion for the density, we have ρ2 = b21z
2 + ..., so computing to second order in ρ, we

have z2 = ρ2/b21 + .... Inserting this into the expression for ũ− ρ, we find

ũ = ρ− b2
b21
ρ2 + ...

U = V dkBT

[
ρ− b2

b21
ρ2 + ...

]
Thus, we have the virial coefficients

E1(T ) = V dkBT > 0

E2(T ) = −E1
b2
b21

= −E1(T )
1

2d+1

βd

Kd

1

Γ(d)
< 0.

We have b2/b
2
1 ∼ h̄d. In the classical limit, h̄→ 0, and hence E2(T )→ 0 in the classical limit. The finiteness

of E2(T ) is a pure quantum effect.
To interpret the sign of E2(T ), we note from above that U/d = pV . In ideal Bose-systems, the Bose-
statistics leads to an overpopulation of occupied single-particle states compared to the classical case. The



result U = 〈N〉dkBT is the classical result for the internal energy of an ultrarelativistic gas. The correction to
the classical result is essentially the same as the correction to the pressure, due to the statistical ”attraction”
between ideal Bose-particles. Attraction between particles leads to reduction in pressure, because particles
are pulled towards each other which counteracts their exterting pressure on a wall. The negative sign of E2 is
therefore a manifestation of the quantum physics of Bose-Einstein statistical ”attraction”, since U/d = pV .




