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Problem 1 - Short questions (20 points)

The sub-problems in this problem deal mostly with different systems and can be an-
swered independently of each other. The questions should only require short derivations
or short explanations.

A point dipole can be constructed in the following way: Consider two point charges, one
of charge q and the other of charge −q, separated by some vector d (from −q to q). The
point dipole is obtained by letting |d| → 0, in such a way that the product q|d| is finite.

(a) Show that a point dipole situated at r = r0 is described by the charge density

ρ(r) = −p ·∇δ(r− r0), (1)

where p ··= qd. Hint: Use a Taylor expansion.

Solution. The charge density of the point charges is ρ(r) = qδ(r− r0)− qδ(r−
r0 + d) [draw a figure to get the signs correct!]. When d → 0 we can Taylor
expand the density to linear order in d (using the hint and the recipe above)

ρ(r) = qδ(r− r0)− qδ(r− r0)− qd ·∇δ(r− r0) + . . .

= −qd ·∇δ(r− r0) + . . .

→ −p ·∇δ(r− r0),

where we take the limit d→ 0 while fixing qd = p in the last line, which yields
the advertised result.

(b) Use the charge density in Eq. (1) to derive the scalar potential V (r) of the point
dipole.

Solution. The scalar potential is given by

V (r) =
1

4πε0

ˆ
d3r′

ρ(r′)

|r− r′|
. (2)

Inserting the charge density in Eq. (1) yields

V (r) =
1

4πε0

ˆ
d3r′

1

|r− r′|
(−p ·∇′)δ(r′ − r0)

=
1

4πε0

ˆ
d3r′δ(r′ − r0)(+p ·∇′)

1

|r− r′|

=
1

4πε0

ˆ
d3r′δ(r′ − r0)

p · (r− r′)

|r− r′|3
=

1

4πε0

p · (r− r0)

|r− r0|3
,
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where we have performed integration by parts in passing from the first line,
performed the gradient of 1/|r− r′| with respect to r′ in the second and resolved
the integral over the delta function in the last, fixing r′ = r0. We recognise this
as the potential of a dipole with dipole moment p.

In the absence of sources, the electromagnetic momentum density g ··= D × B can be
shown to satisfy the equation

∂tg −∇ ·
↔
T = 0, (3)

where
↔
T ··= Tijx̂i ⊗ x̂j denotes the Maxwell stress tensor.

(c) Explain the physical meaning of Eq. (3).

Solution. The above equation says that the change of momentum density per
unit time at a point is equal to the flux of momentum density out of that point
(i.e., the divergence). Hence, −

↔
T is interpreted as the momentum current. This

is the conservation law for momentum.

Suppose we describe a metal as a gas of mobile electrons flowing through the crystal
lattice of the positive ions. On macroscopic scales, the metal is overall charge neutral.
When we place a fixed charge Q into this system, say at r0, the electron charge density
ρ(r) of the metal is altered. A simple model for the scalar potential in the metal due to
the charge Q is given by (

∆− 1

λ2

)
V (r) = −Q

ε0
δ(r− r0), (4)

where λ is a constant called the Debye screening length, and ∆ ··= ∇2 is the Laplacian.
You are given that the Green’s function GŶ (r− r′) of the operator Ŷ ··= ∆− k2 is

GŶ (r− r′) = − 1

4π|r− r′|
exp (−k|r− r′|) . (5)

We use the convention that GŶ satisfies Ŷ GŶ (r− r′) = δ(r− r′).

(d) Write the solution to Eq. (4) using the Green’s function. Give a brief physical
interpretation of the solution.

Solution. The Green’s function solves the general differential equation Ŷ F (r) =
H(r) in the sense that

F (r) =

ˆ
d3r′GŶ (r− r′)H(r′). (6)

Using this with F (r) = V (r) and H(r) = −Qδ(r− r0)/ε0 and the given Green’s
function yields

V (r) =
Qe−|r−r0|/λ

4πε0

1

|r− r0|
. (7)
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When placing a charge Q at a fixed position r0 in a metal, the free charges of
opposite sign will be attracted to it (or free charges of the same sign will be
repulsed from it), so that they partially cancel the potential from the charge Q.
The result is a potential that when viewed from afar (i.e., at distances & λ from
r0) looks like the same as that of a point charge in vacuum but with a reduced
charge Q̃ = Qe−|r−r0|/λ. On macroscopic scales (|r− r0| & λ ), we still have
V ' 0 inside the metal, which is a known result in electrostatics.
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Problem 2 - Radiation of a point charge (30 points)

In the Lorentz gauge, the scalar and vector potential satisfy the equations

V = ρ/ε0 and A = µ0J, (8)

where
··=

1

c2
∂2

∂t2
−∆, (9)

is the wave operator. Recall that the retarded Green’s function1 of the wave operator is
given by

G(r− r′; t− t′) =
1

4π|r− r′|
δ

(
t− t′ − |r− r′|

c

)
. (11)

Consider a particle with charge q moving along a trajectory rq(t).

(a) What is ρ(r, t) and J(r, t) for the moving point charge?

Solution. The charge density is singular on the trajectory of the point particle.
Moreover, J(r, t) = vq(t)ρ(r, t), so

ρ(r, t) = qδ(r− rq(t)) and J(r, t) = qvq(t)δ(r− rq(t)), (12)

where vq(t) = ṙq(t).

Using the Green’s function, we showed in the lectures that (you are not asked to derive
this)

V (r, t) =
q

4πε0

[
1

R−R · vq/c

]
and A(r, t) =

µ0q

4π

[
vq

R−R · vq/c

]
, (13)

where R(t) ··= r− rq(t) and vq(t) ··= ṙq(t).

(b) What is the equation that determines the time at which the quantities in the square
brackets of Eq. (13) are evaluated?

Why are these quantities not evaluated at time t?

Solution. The quantities in the square brackets are evaluated at tr = t−R(tr)/c,
where R(t) = |r− rq(t)|. They are not evaluated at time t because of the

1We have used the convention that G satisfies the equation

G(r− r′; t− t′) = δ(r− r′)δ(t− t′). (10)
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principle of causality: a signal arriving at some point (t, r) cannot originate
from a source outside the light cone centred at (t, r).

If one does not remember the equation, it can be derived with the Green’s
function: Using the definition of a Green’s function, we can write down the
solution

V (r, t) =

ˆ
d3r′
ˆ

dt′G(r− r′; t− t′)
ρ(r′, t′)

ε0

=
q

4πε0

ˆ
dt′ 1

|r− rq(t′)|
δ

(
t− t′ − |r− rq(t

′)|
c

)
, (14)

where we have done the integral over r′ directly. The remaining delta function
fixes t′ = tr, where tr = t−R(tr)/c.

(c) Show that

V (r, t) ' q

4πε0r
(1 + r̂ · ṙq(t− r/c)/c) and A(r, t) ' qµ0

4πr
ṙq(t− r/c), (15)

in the far-field and non-relativistic limit. State how and where these approximations
are used at each step in the derivation.

Hint: You may find the following relations useful:
√
1 + x ' 1 +

x

2
and 1

1 + x
' 1− x for x� 1. (16)

Solution. To approximate the potentials, we should first specify precisely what
these limits mean. The far-field (FF) limit means that r � rq(t), and the non-
relativistic (NR) limit means that vq(t)/c � 1, for all times. The equation for
the retarded time can be approximated by

tr = t− |r− rq(tr)|
c

= t− r

c

√
1− 2r̂ · rq(tr)

r
+

(
rq(tr)

r

)2

expanding length of vector

' t− r

c
+ r̂ · rq(tr)

r
. Using FF, neglecting terms O((rq/r)

2)

The last term in the equation above is a correction to t given by r̂ · rq(tr)
rt

. If T
is a typical time scale (e.g. the period of oscillatory motion) and L is a typical
length scale of the motion of the particle, then this correction is rq(tr)/(tc) ∼
L/(Tc) ∼ V /c, i.e., a typical velocity divided by c. In the NR approximation
we can neglect this, and so tr ' t− r/c.
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As for the factors of 1/(R−R ·vq/c) we approximate the remaining appearances
of R as simply r in the FF approximation. Since A is already of order ṙ/c we
replace 1/(r − r · vq/c) by 1/r in the NR approximation. For V we keep the
leading term in vq/c by expanding

1

r − r · vq/c
' 1

r
(1 + r̂ · vq/c) , (17)

in the NR approximation. This yields the two advertised expressions.

Suppose that you are observing the moving point charge from a large distance r � rq(t)
and you are interested in the electromagnetic radiation from the particle.

(d) Explain what is meant by the radiation fields of the particle.

Solution. The radiation fields are the terms of the electric and magnetic fields
that fall off as 1/r at large distances. These contribute to the power flux density
S = E×B/µ0 with a term that falls off as 1/r2, which compensates the scaling
of the surface area of a sphere, meaning that the source radiates off to infinity.

(e) It is well known that accelerated charges emit electromagnetic radiation. Can this
be qualitatively seen from the expressions in Eq. (15)? (You are not required to
compute E and B explicitly.

Solution. From the expressions in Eq. (15) we see that ∇V will get a contri-
bution that is ∼ 1/r from the dependence on r in the argument of the veloc-
ity. Hence, by the chain rule, this is a contribution that is ∼ a/r. Likewise,
∂tA ∼ a/r. This shows that the electric field that falls off as 1/r is proportional
to the acceleration of the particle. A similar argument can be made for B.
Hence, it takes accelerating charges to produce electromagnetic radiation.
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Problem 3 - Cylindrical permanent magnet (30 points)

Consider a cylinder with radius a and length L. The cylinder has permanent and uniform
magnetization M0 parallel to its axis, and Jf = 0 everywhere. That is,

M(r) =

{
M0ẑ r ∈ cylinder
0 r /∈ cylinder

. (18)

Place the coordinate system so that the cylinder extends from −L/2 ≤ z ≤ L/2, 0 ≤
r ≤ a and 0 ≤ φ < 2π (see Fig. 1).

Figure 1: The figure shows the placement of the coordinate system with respect to the
cylinder. The origin of the coordinate system lies at the centre of the cylinder.

(a) Argue that H in this case can be derived from a scalar potential ϕM(r) such that
H(r) = −∇ϕM(r). Show that ϕM(r) satisfies the Poisson equation

∆ϕM = −ρM , (19)

where ρM(r) = −∇ ·M(r).

Solution. In a medium with Jf = 0, the H field satisfies ∇×H = 0 (∂tD = 0 in
magnetostatics). This means that we can express it as the gradient of a scalar
field H = −∇ϕM . Moreover, the equation ∇ ·B = 0 now translates to

∇ · (H+M) = 0 ⇒ ∇ ·∇ϕM = ∇ ·M, (20)

so
∆ϕM = −ρM , (21)

with ρM(r) = −∇ ·M(r).

At this point, it might be helpful to recall that the mathematical structure of the equa-
tions is exactly the same as those of electric polarization in the absence of free charge,
which can be seen by doing the replacements

M(r)←→ P(r) and ϕM(r)←→ ε0V (r). (22)
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(b) Show that ϕM(r) can be determined from the expression

ϕM(r) =
1

4π

ˆ
S

da′ n̂(r
′) ·M(r′)

|r− r′|
, (23)

where S is the surface of the cylinder, and n̂ is its outward normal.

Hint: You can either make use of the analogy in Eq. (22) directly, or note that M
in Eq. (18) is discontinuous across the surface of the cylinder. This means that its
divergence ∇ ·M is singular on the surface.

Solution. With the hint and the comment before problem (b), we can use our
knowledge about electric polarization combined with the general solution to
the Poisson equation to write down the potential. For polarization, the bound
volume charge density is given by ρ = −∇ ·P, while the bound surface charge
density is σ = n̂ · P. Hence, since M is constant inside the cylinder, only the
surface charge will contribute here. The surface charge corresponding to the
volume charge density −∇ ·M is given by n ·M, from which the result follows.

Figure 2: Picture of argument leading to the identification of the surface charge from
the singular volume charge.

An alternative way to arrive at this result which does not rely on using the
analogy to electrical polarization is the following. The density of “magnetic
charge” −∇ ·M vanishes everywhere inside the cylinder since the magnetization
is constant inside. On the surface, however, M is discontinuous so that its
divergence is singular. We realize that since M ∝ ẑ, the density is only singular
on the circular discs with n̂ ∝ ẑ, so let us focus on these surfaces. By choosing
a small pillbox-shaped integration volume Dl that penetrates the surface and
extends a short distance l/2 inside and outside the cylinder, we can use the
divergence theorem to getˆ

Dl

d3rρM(r) = −
ˆ
Dl

d3r∇ ·M(r) =

ˆ
∂Dl

da
(
−n̂′ ·M(r)

)
, (24)

where n̂′ is the outward normal of Dl. The only finite contribution on the
right-hand side comes from the surface of Dl that lies inside the magnet (where
M 6= 0), denoted by A. On this surface n̂′ = −n̂. When l → 0, Dl reduces to
only the small disc A constituting the flat face of the pillbox (see figure 2).
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Thus, we get only a contribution from the disc A that lies on the surface of the
magnet on the left-hand side of the above equation, which is equal toˆ

A

daσM(r) =

ˆ
A

dan̂ ·M(r). (25)

Since the pillbox was arbitrary, we conclude that σM(r) = n̂ ·M(r) on the entire
surface S, and the result follows by using

ϕM(r) =
1

4π

ˆ
S

da′ σM(r′)

|r− r′|
. (26)

(c) Compute ϕM(z) and use it to determine the magnetic fields H and B along the
z-axis, inside and outside the cylinder. That is, compute explicit expressions for
H(z) and B(z) from ϕM(z).

NB: you should not find the fields as functions of the polar angle φ and the radius
r in the xy-plane.

Solution. We first compute ϕM(z). Noticing that n̂ ·M is non-zero only at the
circular discs at z = ±L/2, we realize that only these surfaces contribute to
the surface integral in ϕM . Let us introduce some convenient notation: denote
these discs by ©s, with s = ±1 corresponding to z = ±L/2. On these surfaces
n̂ ·M = sM0 since n is the outward normal. Hence,

ϕM(z) =
M0

4π

∑
s=±1

ˆ
©s

da′ s

|r− r′|
. (27)

Next, we compute |r− r′| on the discs in cylindrical coordinates. From r′ =
rr̂+ ẑsL/2, we find

|r− r′| =
√
r2 + (z − sL/2)2. (28)

Hence,

ϕM(z) =
M0

4π

∑
s=±1

s

ˆ a

0

drr
ˆ 2π

0

dφ 1√
r2 + (z − sL/2)2

=
M0

2

∑
s=±1

s

ˆ a

0

dr r√
r2 + (z − sL/2)2

. (29)

The integral is solved with a substitution u = (z − sL/2)2 + r2 and du = 2rdr,
which yields

ϕM(z) =
M0

2

∑
s=±1

s

ˆ (z−sL/2)2+a2

(z−sL/2)2

du
2
√
u

=
M0

2

∑
s=±1

s
(√

(z − sL/2)2 + a2 − |z − sL/2|
)

=
M0

2

(√
(z − L/2)2 + a2 −

√
(z + L/2)2 + a2 − |z − L/2|+ |z + L/2|

)
.
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Now, H = −∇ϕM . By symmetry, H must point along ẑ on the z axis. This
means that H(z) = Hz(z)ẑ and

Hz = −
∂ϕM

∂z

= −M0

2

[
z − L/2√

(z − L/2)2 + a2
− z + L/2√

(z + L/2)2 + a2

+ sgn(z + L/2)− sgn(z − L/2)

]
, (30)

where sgn(x) = x/|x|. In total, we find

Hz(z) =
M0

2


z + L/2√

(z + L/2)2 + a2
− z − L/2√

(z − L/2)2 + a2
− 2 |z| < L/2

z + L/2√
(z + L/2)2 + a2

− z − L/2√
(z − L/2)2 + a2

|z| > L/2
. (31)

and since Bz = µ0(Hz +M(z)) we get

Bz(z) =
µ0M

2

[
z + L/2√

(z + L/2)2 + a2
− z − L/2√

(z − L/2)2 + a2

]
(32)

The z-components of the fields Bz(z) and Hz(z) are plotted in Fig. 3.

(d) Which of these (left or right) plots shows Bz(z) and which shows Hz(z)? Comment
on the difference between H and B.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

z/L

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

B
z
(z

)/
(µ

0
M

0
)
,
H
z
(z

)/
M

0 a = 0.2L

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

z/L

a = 0.2L

Figure 3: Plot of Hz(z) and Bz(z) with a = 0.2L.

Solution. The plot on the left-hand side shows Hz and the one on the right-
hand side shows Bz. Note that the B field is continuous while H jumps at
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the surface of the cylinder. This can be traced back to the singular “magnetic
charge density” of H, which is −∇ ·M. This charge density is however not
physical, which is reflected by the absence of such discontinuity in B. This is
consistent with the boundary conditions of B and H: the normal component of
B is continuous across a boundary, but the normal component of H need not
be.
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Problem 4 - Gauge structure of electrodynamics (20 points)

In this course we have seen that the Maxwell theory has a gauge structure.

(a) What is a gauge transformation? Write down how the scalar potential V (r, t) and
the vector potential A(r, t) transform under such a transformation.

Solution. A gauge transformation is a transformation of the potentials that
leave the physical fields unchanged. Specifically,

A 7→ A+∇χ and V 7→ V − ∂tχ, (33)

where χ is an arbitrary (smooth) scalar function. This works because

E = −∇V − ∂tA 7→ −∇V − ∂tA+∇∂tχ− ∂t∇χ = E, (34)

since partial derivatives commute, and

B = ∇×A 7→∇×A+∇×∇χ = B, (35)

since the curl of a gradient vanishes (which is also due to partial derivatives
commuting).

In class, we saw that two of the Maxwell equations in covariant form

∂µF
µν = µ0J

ν (36)

followed from using the principle of least action with the Lagrangian density

L = − 1

4µ0

FµνF
µν , (37)

and the action
S[A] =

1

c

ˆ
d3r

ˆ
dt (L − AµJ

µ) . (38)

We are using the metric with signature g = diag(1,−1,−1,−1) and we have defined

Fµν ··= ∂µAν − ∂νAµ, (39)

and
∂µ ··= (∂t/c,∇) Aµ ··= (V /c,A) and Jµ ··= (cρ,J). (40)

(b) Show that Fµν is gauge-invariant.

Solution. By using the gauge transformation Aµ 7→ Aµ − ∂µχ, we find

Fµν 7→ ∂µ (Aν − ∂νχ)− ∂ν (Aµ − ∂µχ)

= Fµν − (∂µ∂ν − ∂ν∂µ)χ

= Fµν partial derivatives commute. (41)
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This implies that L is a gauge-invariant quantity. However, the action shown in Eq. (38)
does not look gauge-invariant, because of the term where Aµ appears as itself and not
via the field tensor.

(c) Derive the condition that the current Jµ has to satisfy for S[A] in Eq. (38) to be
gauge-invariant. Give a physical interpretation of this condition.

Hint: You can ignore boundary terms.

Solution. Let us consider
´

d4xAµJ
µ under a gauge transformation:

ˆ
d4xAµJ

µ 7→
ˆ

d4x(Aµ − ∂µχ)J
µ

=

ˆ
d4xAµJ

µ −
ˆ

d4x(∂µχ)J
µ

=

ˆ
d4xAµJ

µ +

ˆ
d4xχ∂µJ

µ Integration by parts, (42)

where we have neglected a boundary term as suggested in the hint. Hence, for
this term to be invariant under the gauge transformation, we must require that
∂µJ

µ = 0. This is nothing but the conservation law of charge (the continuity
equation).

For some special two-dimensional materials (two spatial dimensions and one temporal
dimension), the electromagnetic response is drastically different, and the Lagrangian
density is given by

L̃ =
k

4π
εµνρAµ∂νAρ. (43)

In this equation εµνρ is the Levi-Civita symbol, and µ, ν, ρ are indices that take values
in {0, 1, 2}. Its definition here is entirely analogous to the Levi-Civita symbol in three
spatial dimensions: it is cyclic and completely antisymmetric in exchanging any pair of
indices, and ε012 = 1. The coefficient k/(4π) is a real number.

In two spatial dimensions, the electric field E is a two-component vector defined as usual,
i.e., E = −∇V − ∂tA, while the magnetic field is a scalar B = ∂xAy − ∂yAx. In two
spatial dimensions, the electromagnetic field tensor is still given by

Fµν = ∂µAν − ∂νAµ. (44)

(d) Is L̃ in Eq. (43) invariant under gauge transformations?

Hint: The following fact may be useful

εµνρ∂νAρ =
1

2
εµνρFνρ. (45)
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Solution. No. For the same reason that AµJ
µ is not gauge-invariant (see com-

ment before problem 4c), εµνρAµ∂νAρ is not gauge invariant.

This can be seen the following way. Note that the antisymmetry of the Levi-
Civita symbol permits writing (or using hint)

εµνρ∂νAρ =
1

2
εµνρ (∂νAρ − ∂ρAν) =

1

2
εµνρFνρ. (46)

By problem (b) this term is invariant. However, in L̃ it appears contracted with
Aµ, which is not gauge-invariant:

L̃ =
k

8π
εµνρAµFνρ 7→

k

8π
εµνρAµFνρ −

k

8π
εµνρ(∂µχ)Fνρ. (47)

The last term is not zero.

(e) Show that the action
S̃[A] ··=

1

c

ˆ
M

d3xL̃, (48)

is invariant under gauge transformations provided that we can ignore boundary
terms.

Solution. By using the results of problem (d) and the hint we find,

S̃[A] 7→ S̃[A] +
k

8π

1

c

ˆ
M

d3xεµνρχ∂µFνρ, (49)

where we have neglected the boundary term as suggested. The additional term
is zero since (using hint of previous problem again),

εµνρ∂µFνρ = 2εµνρ∂µ∂νAρ = 0, (50)

being a contraction of a symmetric and anti-symmetric tensor.

Comment: Note that this is analogous to why the term AµJ
µ breaks gauge

invariance at the level of the Lagrangian density, but does not at the level
of the action, provided that the current is conserved (problem 4c). Here, the
conservation of the current J̃µ defined by

AµJ̃
µ = Aµ

k

4π
εµνρ∂νAρ, that is J̃µ ≡ k

4π
εµνρ∂νAρ, (51)

is a consequence of partial derivatives commuting. That is,

∂µJ̃
µ =

k

4π
εµνρ∂µ∂νAρ =

k

8π
εµνρ (∂µ∂ν − ∂ν∂µ)Aρ = 0. (52)
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