Studentnumber:

English Page 1 of 1

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

Contact during the exam: Department of Physics Professor Jon Otto Fossum, mob, 91139194

EXAM: TFY4245 FASTSTOFF-FYSIKK VK

Monday 19. May 2008 Tid: kl 09.00-13.00

Allowed exam material: Alternative C

Standard pocket calculator

Rottman: Mathematical Formula (all language editions)

Barnett og Cronin: Mathematical Formula

The exam consists of:

- 1. The first page (the present page) which must be delivered with answers to the multiple choice questions.
- 2. 3 "normal" Problems 1, 2 and 3 (Appendix A)
- 3. One set of multiple choice questions, Problem 4 (Appendix B)

The three "normal" problems count altogether 50%, and the multiple choice questions count altogether 50%. Only ONE of the alternatives A-D must be marked for each of the 20 multiple choice questions. Correct answer gives one point, wrong answer gives zero points.

Answers to the multiple choice questions in Appendix B:

Question	1	2	3	4	5	6	7	8	9	10	11	12
Answer												

Question	13	14	15	16	17	18	19	20
Answer								

Problem 1. Linear response:

1a)

Consider a physical system that is forced out of equilibrium by applying a time (t) dependent external force, $\sigma(t)$, to it.

For linear response, the response field perturbation of the system is:

$$\gamma(t) = \alpha \,\sigma(t) \tag{1}$$

where α is a linear response function which is characteristic of the specific system under consideration.

Assuming that the system returns to equilibrium, $\gamma(t = \infty)$, at a rate, $d\gamma(t)/dt$, which increases proportionally with the magnitude of the perturbation, $\gamma(t)$, we may write:

$$d\gamma(t)/dt = (\gamma(t = \infty) - \gamma(t))/\tau$$
(2)

where the system characteristic time, τ , is the constant of proportionality between the rate and the perturbation.

 τ contains information about the dynamics of physical processes in the system that couple to the external field σ .

Equation (1) represents a simple relaxation process (Debye relaxation).

Assume, that we apply a time dependent periodic force to the system, such that:

$$\sigma(t) = \sigma_0 \exp(-i\omega t) \tag{3}$$

where ω is the applied frequency, and σ_0 is the force amplitude.

The resulting linear response can be written:

$$\gamma(t) = \alpha(\omega) \ \sigma(t) = \gamma_0 \exp(-i\omega t + i\delta(\omega))$$
 (4)

where $\delta(\omega)$ is the phase difference between the force and the response, and and γ_0 is the response amplitude.

• Use the above equations in order to derive an expression for the complex frequency dependent linear response function

$$\alpha(\omega) = \exp(i\delta(\omega)) = \gamma(t)/\sigma(t) = \alpha'(\omega) + i\alpha''(\omega)$$
 (5)

for the case of a simple relaxation process like the one in Equation (2). In addition sketch both $\alpha'(\omega) = \text{Re}(\alpha(\omega))$ and $\alpha''(\omega) = \text{Im}(\alpha(\omega))$ for this case. (i = $\sqrt{-1}$)

1b)

During a cyclic experiment like the one described in a), the power per unit volume provided by the external force may be written:

$$dw/dt = Re\alpha(t)d(Re\gamma(t))/dt$$
 (6)

where Re means Real part.

• Show that Equation (6) may be rewritten in the form

$$dw/dt = -(1/2) \sigma_0^2 \omega \alpha'(\omega) \sin(2\omega t) + \sigma_0^2 \omega \alpha''(\omega) \cos^2(\omega t)$$
 and discuss the meaning of the two terms in Equation (7).

• Use Equation (7) to write down an expression for the time-averaged power take-up by the system, and discuss the meaning of the result.

Note typo in Eq. (6), should say $dw/dt = Re\sigma(t)d(Rey(t))/dt$

1c)

• For general linear response functions $\alpha(\omega)$, (i.e. not necessarily simple relaxation), derive the following Kramers-Kronig relations between the real and imaginary parts respectively:

$$\alpha'(\omega_0) = (1/\pi)P \int [\alpha''(\omega)/(\omega - \omega_0)] d\omega$$

$$\alpha''(\omega_0) = -(1/\pi)P \int [\alpha'(\omega)/(\omega - \omega_0)] d\omega$$
(8)
(9)

where the integral limits are from $-\infty$ to $+\infty$, and the principal value, P is defined as $P \int [\alpha(\omega)/(\omega-\omega_0)]d\omega =$

 $\lim \delta \to 0 \left\{ \int_{1} [\alpha(\omega)/(\omega - \omega_{0})] d\omega + \int_{2} [\alpha(\omega)/(\omega - \omega_{0})] d\omega \right\}$ (10)

where the limits of integral 1 (J_1) are between $-\infty$ and ω_0 - δ , and those of integral 2 (J_2) are between ω_0 - δ and ∞ .

• Discuss the physical contents of the Kramers-Kronig relations.

Problem 2. Nematics and the Isotropic-Nematic transition: 2a)

- What is the general meaning of, and the general definition of, an order parameter in the context of phase transitions?
- Discuss what is meant by a nematic phase.
- Show that the order parameter for nematic ordering most suitably is chosen to be $S_2 = \langle (3\cos^2\theta 1)/2 \rangle \tag{10}$
- and discuss the meaning of the θ -angle, as well as the meaning of the averaging denoted by $\langle \ \rangle$ for this case.

2b)

Landau theory is a thermodynamic theory describing phase transitions, and this theory considers the Helmholtz free energy $f(\eta,T)$, where η is the order parameter, and T is the temperature: Landau theory assumes that near the phase transition temperature T_C , it is possible to expand the Helmholtz free energy in powers of η , thus

$$f(\eta,T) = f_0 + c_2 \eta^2 + d_3 \eta^3 + c_4 \eta^4 + c_5 \eta^5 + c_6 \eta^6 + \dots + c_n \eta^n + \dots$$
 (11)

Assume that $c_2(T) = b(T - T_C)$, where b is a positive constant, and also assume that $c_3, c_4, c_5, c_6, \ldots, c_n, \ldots$ are constants independent of T.

• Consider the case when $d_3 = -c_3$ is negative, c_4 is positive, and $c_n = 0$ for n > 4, and argue why such a non-zero c_3 is necessary in order to describe the isotropic-nematic transition, i.e. we are considering the Landau-de Gennes model for the nematic transition which then is:

$$f(S_2,T) = f_0 + c_2 S_2^2 - c_3 S_2^3 + c_4 S_2^4$$
(12)

- Use Equation (12) to show that the isotropic to nematic transition in this model is a first order phase transition, and that at the transition temperature T_{ni} , $S_2(T_{ni}) = C_3/(2C_4)$.
- Use Equation (12) to calculate $S_2(T)$ for $T < T_{ni}$.

2c)

The Maier-Saupe theory for nematics introduces a molecular field which acts to orient the rod-like molecules of standard nematics. This molecular field has the form

$$u(\theta) = -u_0 S_2((3\cos^2\theta - 1)/2)$$
(13)

• Discuss the meaning of the molecular field and its terms as given in Equation (13) Boltzmann statistics gives the orientation distribution function $w(\theta, \phi)$ for this case, i.e.

$$w(\theta, \phi) = \exp(u(\theta)/k_B T)/Z \tag{14}$$

where k_{B} is Boltzmann's contant, T is the temperature, and the normalization factor Z is the partition function.

- Use Equation (14) to show how it can be calculated from this model that $S_2(T_{ni}) = 0.44$
- Discuss the conceptual difference between the Landau-de Gennes theory introduced in b) and the present Maier-Saupe approach.

Problem 3. Superconductivity:

3a)

• Sketch and discuss magnetization curves (i.e. magnetization **M** vs magnetic field **H**) for type I and type II superconductors respectively.

3b)

Using Ginzburg-Landau wave mechanics, the superconducting current density (for Cooper pairs) may be written

$$\mathbf{j} = -2\mathbf{e}|\psi|^2 (h\nabla\theta(\mathbf{r})/2\pi + 2\mathbf{e}/\mathbf{A})/2\mathbf{m}_e$$
 (15)

where $\psi(\mathbf{r}) = |\psi(\mathbf{r})| \exp(i\theta(\mathbf{r}))$ is the wavefunction with phase $\theta(\mathbf{r})$, 2e is the Cooper pair charge, 2m_e is the Cooper pair mass, and **A** is the vector potential, related to the magnetic field through $\nabla x \mathbf{A} = \mathbf{B}$.

• Show how you can combine Equation (15) with the Maxwell equation $\nabla x \mathbf{B} = \mu_0 \mathbf{j}$, in order to derive the London equation

$$\nabla^2 \mathbf{B} = \mathbf{B} \lambda_{\mathsf{L}}^{-2} \tag{16}$$

where λ_L is the London penetration depth, defined as

$$\lambda_{L}^{-2} = \mu_{0} \rho_{S}(-2e)^{2}/(2m_{e}) \tag{17}$$

and the Cooper pair density $\rho_S = |\psi|^2$.

• Discuss and sketch the meaning of λ_{L} .

3c)

The Ginzburg-Landau theromodynamic theory for superconductivity assumes Equation (11) for superconductivity with $|\psi|$ as the orderparameter, and b and c_4 positive, $c_3=0$ and $c_n=0$ for n>4.

• Use these assumptions to calculate the equilibrium value $\rho_S = |\psi|_{eq}^2$ for $T < T_C$.

3d)

Type II superconductors may involve spatial variations of ρ_S throughout the sample, i.e. Equation (11) may not be applicable, since it involves a spatially homogenous order parameter.

In the Ginzburg-Landau-Abrikosov theory for superconductors, Equation (11) is replaced by this expression for the free energy:

$$g(|\psi|,T) = g_0 + b(T-T_C)|\psi|^2 + c_4|\psi|^4 + (h/8\pi m_e)^2|\nabla\psi|^2 + (magnetic field dependent terms)$$
 (18)

• Use dimensional analysis together with Equation (18) to show that there must be a length describing spatial variations of $\rho_S = |\psi|^2$ in the sample, and that this length, ξ_{G_i} has the form

$$\xi_{\rm G} \propto (T_{\rm C} - T)^{-1/2} \text{ for } T < T_{\rm C}$$
 (19)

 ξ_G is the coherence length.

• Discuss the meaning of ξ_G in relation to λ_L derived in b) above, in the context of type II superconductors.

Note typo in Eq.(15), should say $\mathbf{j} = -2e|\psi|^2(h\nabla\theta(\mathbf{r})/2\pi + 2e\mathbf{A})/2m_e$

Problem 4. Multiple choice questions:

- 1. The pair-distribution function $g_2(r)$ for an isotropic atomic amorphous solid or a liquid display a series of maxima and minima vc r. The minima signify:
 - a) Preferred positions of shells of atoms around a chosen reference atom
 - b) Intensity maxima of scattered x-rays from the liquid, where r is the sample to detector distance
 - c) The distribution of a liquid subjected to an electric field
 - d) None of the above
- 2. Bragg scattering peaks from a periodic structure may display finite widths because of:
 - a) Infinite sample size, i.e. infinite number of scattering planes?
 - b) Thermally exited phonons?
 - c) Only due to finite instrument resolution?
 - d) None of the above?
- **3.** Which of the following type of radiation has the smallest penetration depth into materials:
 - a) X-rays?
 - b) Electrons?
 - c) Neutrons?
 - d) All radiaton (a),b),c)) have the same penetration depth?
- **4.** The intensity I(q) of scattered x-rays from an isotropic sample is expressed as $I(q) \propto N$ S(q), where N is the number of particles in the scattering volume, S(q) is the interference function, and $q = (4\pi sin\theta)/\lambda$ is the magnitude of the scattering vector. In order to derive these expressions for I(q) and q, we have assumed that:
 - a) The scattering is inelastic, i.e there is a frequency shift in the scattering process from the primary to the scattered beam
 - b) The atoms are located at Bravais lattice positions
 - c) The atoms do not move during the scattering processes
 - d) None of the above
- **5.** A self-avoiding random walk in 3 dimensions will create an open object with a fractal dimension D of:
 - a) D = 3
 - b) D = 2
 - c) D < 1
 - d) None of the above

- **6.** Smectic order is the term used for:
 - a) Positional order, but no orientational order
 - b) Isotropic order
 - c) Orientational order, but no positional order
 - d) None of the above
- 7. A pure elastic solid is described by:
 - a) The Newtonian flow law: stress = viscosity*shear-rate
 - b) Hooke's law: stress = modulus*strain
 - c) Time-delayed relaxational behavior
 - d) An loss modulus that has a peak at the time characteristic for plastic flow
- **8.** The term anelastic behavior refers to:
 - a) Instantaneous response
 - b) Time-delayed response
 - c) Viscous response
 - d) None of the above
- **9.** By orientational polarization, we mean the induced macrocopic polarization is a result of the sum of
 - a) Permanent dipoles in the material that may reorient in an external electric field
 - b) Dipoles solely induced by an external electric field
 - c) Piezoelectric domains
 - d) None of the above
- 10. By distortional polarization, we mean the induced macrocopic polarization is a result of the sum of
 - a) Permanent dipoles in the material that may reorient in an external electric field
 - b) Dipoles solely induced by an external electric field
 - c) Piezoelectric domains
 - d) None of the above

11. Piezoelectricity in a material means that:

- a) There is a quadratic relationship between elastic and electric fields in a material?
- b) There is a linear relationship between the elastic and electric fields in a material?
- c) There is no coupling between elastic and electric fields in a material?
- d) None of the above?

12. Diamagnetism:

- a) Diamagnetism is the term used for magnetism in materials with permanent magnetic dipoles
- b) The atomic diamagnetic susceptibility is independent of the number of electrons in the atom
- c) Diamagnetism is present in all materials
- d) None of the above?

13. Paramagnetism:

- a) Paramagnetism is present in all materials
- b) The paramagnetic susceptibility for a sample with localized magnetic moments is proportional to the temperature
- c) The paramagnetic susceptibility is in general small (compared to the diamagnetic susceptibility for example) and and negative
- d) None of the above?
- **14.** For second order phase transition, near the critical temperature T_C, critical fluctuations may become important for the observed behavior. Which of the following statements is true?
 - a) Critical fluctuations are included in the classical Landau theory?
 - b) Critical fluctuations are caused by infinitely large restoring forces preventing emergent dynamic and spontaneous regions of finite order parameter near T_C?
 - c) Critical fluctuations are considered to be objects with a size proportional to the lattice spacing of the material?
 - d) None of the above?

15. Ferroelectricity is the results of

- a) Dipole-dipole interactions
- b) Distortional polarization only
- c) Piezoelectric couplings in the material
- d) None of the above

- **16.** Ferromagnetism is basically a result of:
 - a) Classical interaction between magnetic dipoles?
 - b) Quantum mechanical exchange forces between spins of neighboring atoms?
 - c) Quantum mechanical exchange of phonons resulting in paired electrons?
 - d) None of the above?
- 17. Nuclear Magnetic Resonance (NMR) can be observed
 - a) Only in ferromagnetic materials
 - b) Only for spin 3/2 nuclei
 - c) In all materials independent of nuclear spin states
 - d) None of the above
- 18. Cooper pairs:
 - a) Are bosons?
 - b) Are formed by pairs of electrons bound together by exchanging photons?
 - c) Are localized to within the unit cell?
 - d) None of the above?
- 19. In a Dynamic Light Scattering (DLS) experiment, the dynamic structure factor $S(\mathbf{q},t)$ is measured, where \mathbf{q} is the scattering vector. Typical scattering curves from samples made from a dilute suspensions of Brownian diffusing colloidal spheres follow a simple relaxational behavior of the kind $S(\mathbf{q},t) = \exp(-t/\tau(|\mathbf{q}|))$, where the relaxation time $\tau(|\mathbf{q}|) = C |\mathbf{q}|^2$. The proportionality constant C is
 - a) $C = D_S$, the self diffusion constant?
 - b) $C = 1/D_S$, the inverse of the self diffusion constant?
 - c) C has no physical meaning, its just a fitting parameter to the data?
 - d) $C = 1/\eta$, the inverse of the viscosity of the suspending liquid?
- **20.** The widths of the Brillouin doublet peaks measured in Rayleigh Brillouin experiments provide information about:
 - a) Lifetimes of sound waves?
 - b) Propagation velocities sound waves?
 - c) Lifetimes of heat waves?
 - d) Propagation velocities of heat waves?