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Some relationships that may be found useful:  

 

Maxwell equations:  
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Electromagnetic wave equation: 
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Electromagnetic identities: 
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Curie-Brillouin relationship: 
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Curies law: 
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Problem 1 – plasma excitation (33.33 %).  

The response of the free electrons in a metal to external electromagnetic fields can be described by a 

cold plasma model where the charges of the free electrons are balanced by those of the (immobile) 

ion cores.  

 

Assume that an electromagnetic plane wave is impinging on the sample, with components on the 

form 
( )

0( , ) i k r tr t e     , where 0  symbolizes the field amplitude, k is the wave number and ω is 

the radian frequency. Assume the plasma to be non-magnetic (µ=µ0) 

 

a) Let r  be the position for a single free electron. Set up an equation of motion for the electron due 

to the forces exerted on it by the external electromagnetic field, taking into account also resistive 

losses.  

 

Show that in the long wavelength limit, the collective response of the free electron system can be 

given as: 
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where n is the number density of electrons, τ the relaxation time associated with resistive losses, e 

and me the charge and the rest mass of the electron, respectively, ε0 the vacuum permittivity, and εr 

the dielectric constant of the positive ion core medium. 

 

In the rest of the problem we restrict ourselves to combinations of temperatures and electromagnetic 

radiation where ωτ >> 1, such that resistive losses can be neglected. 

 

b) Find a dispersion relation for the electromagnetic wave in the plasma medium in the long 

wavelength limit.  Sketch the resulting ω(k) in a figure, and account explicitly for the excitation of 

the plasma at ω = ωp. 

 

A metal sample like the one above (S1) is in the form of a thin slab. We place S1 (z>0) in direct 

contact with a slab of another metal, S2 (z<0), such that the interface between the samples is 

located in z = 0.  

S1 has plasma frequency ωp1 while S2 has plasma frequency ωp2. When brought together, 

solutions of the Poisson equation for the two metal slabs yield potentials 1( , ) cos( ) kzx z A kx e   

(z > 0) and 2( , ) cos( ) kzx z A kx e  (z <0), for which the associated electric fields are given by 

E   . The boundary conditions that apply between the two media, require both the 

tangential component of the electric field and the normal component of the dielectric field to be 

continuous at the interface, i.e. E1x= E2x and D1z= D2z in z =0. 

 

c) Show that the characteristic long wavelength-limit plasmon frequency at the interface is given 

by 
1/2

2 2

1 2

1
( )

2
p p  

 
  
 

 

 



Side 4 av 5 

 4 

In this problem, (and in the lectures/curriculum), we have employed a free electron gas (Drude 

model) when deriving the plasmon behavior. A more realistic description of the free electrons in 

a solid is given by a so-called nearly-free electron model, taking into account the periodic 

potential via the Bloch-wave formalism. How would the introduction of a nearly-free electron 

model affect our long wavelength limit plasma model?      

 

 

Problem 2. Super conductivity (33,33 %) 

 

a)  Sketch and explain the magnetization curves (i.e. magnetization M vs magnetic field H) 

for type I and type II superconductors, respectively. 

 

Employing Ginzburg-Landau wave mechanics, the superconducting current density for Cooper pairs 

may be written 

 . . . .( ( )2)  c p c p
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where the cooper pairs are described by a wave function
( )

. .( ) i r

c pr n e    with nc.p. as the cooper 

pair concentration, and θ(r) as a phase. A is the vector potential related to the magnetic field such 

that A B   

 

b) Show that the London equation,
2 2

LB B  , can be derived from the expression for 

superconducting current density in combination with Maxwell’s equations, where λL is a 

characteristic length.  

 

Assume sample in the shape of a long straight cylinder with radius R, carrying a steady 

superconducting current, Is.c, along the cylinder axis, l . The cylinder is a type I superconductor. Find 

B(r), where r is the radial distance from l located in r = 0 in the center of the cylinder. Sketch the 

result in a graph, and discuss the physical meaning of λL. 

 

c) In the Ginzburg-Landau theromodynamic theory for superconductivity, the free energy function 

for a bulk superconductor of type I, may be expressed as 
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where g0, γ and g4 are positive constants, while 
1/2

.=  c pn serves as the order parameter. 

   

Find an expression for the equilibrium value of the cooper pair concentration for T < TC. 

 

Type II superconductors may involve spatial variations in nc.p(r). Thus, eqn. (1) does not hold since it 

involves a spatially homogeneous order parameter.  Neglecting all field effects, it can be shown that 

the Ginzburg-Landau free energy function, at any given temperature T < TC, and in regions with a 

spatially varying order parameter may be expressed 
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where  
eq

 is the homogeneous equilibrium bulk concentration for T < TC as determined from eqn. 

(1). Determine the dimension and temperature dependence of the parameter cGL, and discuss its 

physical meaning. 
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Problem 3 Magnetism (33.33%).       
 

Crystals of Cr(III)Br3 exhibit ferromagnetic properties at temperatures T < TC = 32.7 K, and 

paramagnetic response for T > TC. The magnetic moments arise from the Cr
3+ 

ions. These occupy 

nearest neighbour lattice sites of an equidistant spacing, and their magnetic moments interact with 

one another through a direct exchange. The crystal symmetry of Cr(III)Br3 is such that ferromagnetic 

domains align parallel or antiparallel with the c-axis. 

 

In a generalised microscopic model, containing both Heisenberg exchange terms and the spin 

interaction with an external magnetic field, extH , the energy associated with magnetic response may 

be expressed  

 

 0 0( ) ( ) ( )       (2)ij i j B ext i B eff i

i j i i

U r S S g JLS H S g JLS H S   


               

 

The first sum is taken over all exchanging spin pairs ij.    represents the exchange energy and its 

value depends on the interatomic distance ijr .  For simple systems in equilibrium, all exchange pair 

distances, ijr , may be assumed identical, and thus T   is constant.  

 
 

a) Cr
3+

 has electronic configuration 3d
3 

in the ground state. Determine the effective number of Bohr 

magnetons, 
1/2( )[ ( 1)]p g JLS J J   for free Cr

3+
 ions.  

 

In crystals of Cr(III)Br3, measurements show a paramagnetic yield which corresponds to p for Cr
3+

 

being approximately 5 times larger than the value calculated (correctly) above.  Give a brief account 

for reasons that could cause the discrepancy.   

 

b) In the direct exchange that applies to Cr(III)Br3,   in eqn. (1) is non-zero only for the two nearest 

neighbour spins along c . Employ a mean field approach to the microscopic model presented in eqn. 

(2) to show that this yields the standard Weiss molecular mean field eff extH H M  , and express 

the constant λ by quantities defined in eqn. (2). (Hint: Express effH  using eqn. (2), and replace 

microscopic quantities by their thermal average values under the assumption that the net 

magnetisation of the system is accounted for by N equivalent spins). 

 

Use the Weiss molecular mean-field representation to find an expression for the paramagnetic 

susceptibility for T > TC in the presence of an external magnetic field Hext, and show that 
12 ( 1) (3 )

CC T BT S S k     . 

 

c) Express M(T) in the ferromagnetic region in the absence of external magnetic fields, based both 

on microscopic and mean field quantities. Compare the expressions and discuss possible 

discrepancies between the two approaches. 


