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Some relationships that may be found useful:  

 

Maxwell equations:  
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Electromagnetic wave equation: 
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Electromagnetic identities: 
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Curie-Brillouin relationship: 
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Curies law: 
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Problem 1 – Landau theory & ferroelectrics (33.33 %).  

 

Let G1 and G2 represent the free-energy functions of the polar and non-polar phase, respectively, of a 

system which undergoes a ferroelectric phase transition at T = TC. According to Landau theory, the 

free energy of a uniform system region (single domain), may be expanded as a power series, with the 

polarisation P= | |P  acting as the so-called order parameter. In the absence of external electric 

fields, the expansion can be represented as   
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Here, gi(T), i = 0,..,n, are general functions assumed to vary smoothly as functions of T.     

 

Let g2(T) = γ(T-TC), where γ > 0, and constant, and assume eqn. (1) applied to a second order 

ferroelectric phase transition with an ordered polar state at T <TC. For a small temperature region 

about TC, the series in eqn. (1) may be terminated after 4
th

 order.  

 

a) Assign g0(T) such that the expansion in (1) is representative for both G1 and G2 close to TC, 

and specify restrictions that must apply to g1, g3 and g4  for the current situation. Provide 

explicit reasons for the restrictions you impose, and show that these lead to well defined free 

energy minima at both sides of TC. 

 

 

An external electric field, extE , is introduced, which couples linearly to the system response variable 

symbolised by the order parameter in eqn. (1). Furthermore, assume the sample to be small and the 

spatial variation of the field to be in the long-wavelength limit, leaving extE ~ constant throughout the 

sample volume.   

 

b) Introduce a term to account for the effect of the external field on the free energy expression 

in eqn. (1). Comparing with the results from a), discuss briefly how the presence of an (long 

wavelength) external field may affect the polarisation magnitudes associated with the energy 

minima above and below TC.  

 

Express the dielectric susceptibility in a general situation with a non-zero external field, and 

use this to derive expressions for the dielectric susceptibilities above and below TC for the 

situation in a) when the external field is zero.  

 

 

Consider the system in a) and b) to be BaTiO3 (BTO). Its ferroelectric response can be related to a 

dipole moment formed by a shift of the Ba
2+

 and Ti
4+

 ions relative to the O
2-

 ions (see Fig. 1). Just 

above TC, BTO is cubic, with a= 4.02 Å. Below TC, ionic displacement leads to a slight distortion of 

the cubic symmetry, and the lattice becomes tetragonal with the dipole moments aligned along the 

unique c-axis.  
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Figure 1 BaTiO3 crystal structure above (left) and below (right) Tc, with positive ion shifts along c indicated. 

 

The sample is cooled down from T > TC in the absence of external electric fields, and found to 

polarise spontaneously at TC = 392.1 K. Just below TC, at T=392 K a spontaneous polarisation of 0.04 

C/m
2
 is measured. Upon further cooling the polarisation rises monotonically until reaching a 

maximum value of 0.26 C/m
2
 at 300 K. 

 

c) Under the assumption that the relative shifts of the positive ions are identical, and that these 

fully account for the spontaneous polarisation when CT T , what are the magnitudes of the 

relative shifts associated with the spontaneous polarisation at T= 392 K and T=300 K, 

respectively ?  

 

Close to TC the cubic distortions (i.e. ionic shifts) are small. In a first approximation the 

individual dipole contributions can be considered to arise from ions located in positions of 

nearly cubic symmetry, such that the individual microscopic polarizabilities, αi, can be 

related to the mean field dielectric response function via the Classius-Mosotti relation:  
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with ni as the number density of dipole moments of type i.  

 

Express the temperature dependence of the polarizability of BTO in a temperature region 

close to TC. Sketch the result, and comment on its appearance, considering ionic 

polarizability should represent the essential critical physics in second-order displacive 

ferroelectric phase transitions.  

 

From measurements we find that
( )

2
( 0.5 ) BTO CT

BTO CT K
   . Use this observation to find a 

value for the constant γ used in a). 

 

 

 

 

 

 

 

 



Side 5 av 7 

 5 

Problem 2. Superconductivity (33,33 %) 

 

The superconducting current density for Cooper pairs may be written 

 . . . .( ( )2)  c p c p
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where the cooper pairs are described by a Ginzburg-Landau wave function
( )

. .( ) i r

c pr n e    with 

nc.p. as the cooper pair concentration, and θ(r) as a phase. A is the vector potential related to the 

magnetic field such that A B   

 

a) Employ Maxwell’s relations to show that the London equation
2 2

LB B  , can be derived 

from the expression for superconducting current density, with λL as a characteristic length. 

What is the physical interpretation of λL? 

 

 

 

 

Figure 2. Cross section of superconducting plate. 

 

b) Assume a metallic plate with thickess δ, normal to the x-axis (see fig. 2). Show that B(x) 

inside the plate in the superconducting state is given by  
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where Ba is the field outside the plate.  

 

 

By decreasing the thickness to L  , the plate reduces to a thin film. Express the 

effective magnetization, M(x), inside the plate, and show that it becomes parabolic in x as 

the plate thickness becomes very small. 

 

c) Show that the free energy density of the superconductive state in the thin sheet at T= 0 K 

becomes  
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where FS.C.(0)  is the bulk free energy density for the superconductive state at T= 0 K. 

 

Find the magnetic contribution to the average free energy density over the film thickness, 

and show that the critical field of the thin film is proportional to (λ/δ)HC, where HC is the 

bulk critical field. 

 

The model established in b) and c) accounts for a superconducting thin film. If 0  , we 

approach a model of a 2D superconducting sheet. When you take into consideration other 

physical quantities that need to be properly accounted for in the superconducting state 

(coherence length, current density), is it possible for a 2D sheet to be superconductive? 

Justify your answer. 

 

 

 

Problem 3. Magnetism (33.33%).       
 

Consider a solid with A and B as lattice sites favouring antiparallel alignment of the magnetic 

moments along the easy axis of magnetisation of the system, leading to an antiferromagnetic phase 

below a critical temperature, TN, and a paramagnetic response above TN.  

 

In a mean field approach, using the so-called Weiss molecular field, and  accounting only for nearest 

neighbour exchange fields, i.e. ;   A B B AH M H M     , the susceptibility in the paramagnetic 

region can be expressed as
2

,    N

N

C
T C

T T
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
, where λ= const  > 0, and C is the Curie constant. 

 

In the approach above, the A- and B-sites are treated as two separate sub lattice systems with weak 

magnetisation by an external field in the paramagnetic region, so that each obey Curies law with CA= 

CB = C, but where the two anti-parallel systems are mutually connected via the exchange fields. 

 

It turns out, however, that this model most often deviate significantly from experimental results, 

indicating that another parameter θ should replace the so-called Neel temperature, TN, in the 

expression for the susceptibility. An improved Weiss model for the antiferromagnet can be 

constructed by accounting also for second nearest neighbour exchange, i.e. internal direct exchange 

in each of the sub-lattice systems. The modified exchange fields now become 

 

;   A B A B A BH M M H M M         ,  

 

where ν is a constant that can be positive or negative. 

 

a) Assume an external magnetic field, extH , aligned along the easy axis of the system, and find 

expressions for the magnetisations,  and A BM M , of the two systems. 

 

Determine TN for the current model, taking into account that both sublattices should undergo 

spontaneous ordering at TN also in the absence of external fields.  
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Show that the paramagnetic susceptibility
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b) Let the A and B sites be occupied by identical atoms with J=1/2, and apply the exchange 

field model above (without external magnetic field).  

 

Show that the magnetisation of the two sublattice systems in the antiferromagnetic phase can 

be expressed  
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c) Use the result in b) to find an expression for TN , and show that for very low T, M(T) 

approaches the 0 K saturation moment, MS(0), as: 
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      (Hint: For , tanhx x  converges towards 1 as
2(1 2 )xe ). 

 

If we regard only one of the two sub lattices and demand 0   , the result is practically 

identical to the mean field (Weiss molecular field model) ferromagnetic solution.  

 

Compare the mean field trend at low temperatures to the trend found from ferromagnetic 

spin-wave based statistical mechanics models. 

 

Would you expect any of the models to account reasonably well for the low temperature 

trend in antiferromagnetic systems? Justify your answer.  

 


