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Some relationships that may be found useful.

Maxwell equations:

∇× ~H = ~j + ∂ ~D
∂t ∇ · ~B = 0

∇× ~E = −∂ ~B
∂t ∇ · ~D = ρ

Electromagnetic wave equation:

∇2 ~E = µ0
∂2 ~D

∂t2

Electromagnetic identities:

~D = ε0ε ~E = ε0 ~E + ~P = ε0(1 + χ) ~E ~B = µ0µ ~H = µ0( ~M + ~H) = µ0(1 + χ) ~H

Curie-Brillouin relationship:

M = ng(JLS)µBJBJ

(
g(JLS)Jµ0µBH

kBT

)
with:

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
x

2J

)

g(JLS) =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)

Curies law:

χ =
C

T

Some physical constants:
electron mass: me = 9.109 · 10−31 kg
elementary charge: e = 1.602 · 10−19 C
vacuum permittivity: ε0 = 8.8542 · 10−12 F/m
vacuum permeability: µ0 = 4π · 10−7 H/m
Boltzmann’s constant: kB = 1.38065 · 10−23J/K
Bohr magneton: µB = eh̄/2me = 9.274 · 10−24J/T
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Problem 1 - Plasmons
a) In the long wavelenght limit, derive the expression ε(ω) = 1− ω2

p

ω2 , ω
2
p = ne2

meε0
as the mean-field dielectric

response of a free electron gas with number density n, to an electric field ~E = ~E0 exp(i(~k~r − ωt)).

In a metal, the free electron gas and the remaining ion cores constitute a plasma. The figure below illustrates
a possible dielectric response function for the ion cores, εic(ω), over a frequency range from infrared to hard
UV/soft X-rays, well above ωp.

Explain the frequency dependence in εic. Derive an expression for the dielectric response of the whole plasma
in the long wavelenght limit, valid within the range where plasmons may be exited.

b) Show clearly that metals are opaque (non-transparent) for light with ω < ω̄p. You can assume the
metal to be non-magnetic, i.e. µ(ω) ≡ 1, so that the permeability is as for vacuum.

Na is an alkali metal with valency 1, (i.e. one free electron per atom). Na crystallises in a body cen-
tred cubic cell, with lattice parameter a = 0.429 nm. Calculate the wavelength cutoff for a Na metal when
you assume εic(∞) = 1.05.

Problem 2 - Polarisation
Consider a solid consisting of independent dipoles that are able to rotate freely, and are randomly oriented
in the absence of external fields. The potential energy of a dipole of moment ~p in an applied electric field ~E
is

V = −~p · ~E = −pE cos θ.

The ensemble of dipoles can be treated via statistical mechanics by employing a Boltzman distribution of
the kind f(θ) = e−V/kBT , to express the probability of finding a dipole in orientation θ under the influence
of en external field ~E, at temperature T .

a)Show that the total polarisation for a system of volume V , consisting of N such independent rotational
dipoles of the same magnitude p, can be expressed

P =
nkBT

E

[
pE

kBT
coth

(
pE

kBT

)
− 1

]
.

(Hint: The ensemble of randomly oriented dipoles with fixed magnitudes may be represented as a continuum
by a spherical surface with radius p).

The orientational polarisability per dipole can be given as α = P
En . Show that for weak fields, α ∝ T−1.
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b) If the electric field oscillates, the dipoles, following the field, will flip back and forth as the field reverses
its direction during each cycle. However, the dipoles may experience “friction”, due to their interaction
with other molecules/dipoles in the system, causing some loss of energy, also known as dielectric loss. This
means there is a charcteristic relaxation time, τ , involved, as well as a possible phase lag between the field
and the polarisation. Thus, the dielectric function, ε = ε0 + αn = ε1 + iε2 is a complex function (n is the
number density of dipoles).

Sketch graphs of ε1 and ε2 against logωτ , where ω is the oscillation frequency of the external electric field,
and give explicit reasons for the appearances you have suggested for the real and imaginary dielectric re-
sponses.

Problem 3 - Superconductivity

The Ginzburg-Landau theory is based on a free energy density which may be expressed:

fsc(T, ψ) = fn(T ) + γ(T − Tc) |ψ(~r)|2 +
1

2
β(T ) |ψ(~r)|4 +

1

2me
| ~popψ(~r)|2 ,

where fsc and fn are the free energy densities of the superconducting and normal state, respectively, while
Tc denotes the temperature of the normal-supercondcting phase transition. ψ(~r) = |ncp(~r)|1/2 eiθ(~r) repre-

sents a complex order parameter with ncp(~r) as the number density of cooper-pairs. ~pop = −ih̄∇ + 2e ~A is

a generalised momentum operator where ~A is the vector potential, related to the magnetic field through
∇× ~A = ~B. γ is a positive constant, and β(T ) a function which varies smoothly with temperature. Close
to Tc, β(T ) ' β =constant.

a) Find the equilibirum value (ncp)eq for T < Tc, but close to Tc, for the bulk of a type I superconductor,

and determine the temperature dependent critical field ~Hc(T ).

The superconductive current density formed by the Cooper pairs can be expressed~jcp = q
2m [ψ?~popψ + ψ(~popψ)?],

with q and m as the Cooper pair charge and mass, respectively.

b) Assume a type I superconductor in thermal equilibrium. Derive the London equation, ∇2 ~B = ~B/λ2L
by combining the expression for the supercoductive current density with Maxwells equations. What is the
physical interpretation of λL(T ) ?

c) Express the equilibirum value for the order parameter from the Ginzburg Landau free energy density
function in a transition region between the bulk superconductive state and the so-called vortex region in a
type II superconductor, and use the result to find an explicit form for the so-called coherence length, ξ(T ).
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Problem 4 - Magnetism

a) Apply Hund’s rules to determine the ground state of Gd3+ with electron configuration 4f75s2p6 and
V2+ with configuration 3d2. Express your answers in terms of J, L, S quantum numbers for the partially
filled shells.

b) We compose solids of the ions in a) and find them to exhibit paramagnetism at room temperature. Under

the assumption of weak magnetic fields, show that Curies constant may be expressed C =
np2µ2Bµ0

3kB
, where

p = g(JLS)(J(J + 1))1/2 is the effective number of Bohr magnetons.

In the two solids, the density of Gd3+-ions is n = 2.62 · 10+28m−3, while the density of V2+-ions is
n = 3.59 · 10+28m−3. Calculate the Curie constants for the two paramagnetic solids.

c)The Gd3+ solid is a metal which happens to undergo a paramagnetic-ferromagnetic phase transition at
289 K. Employ a Weiss molecular mean-field direct exchange, ~Heff = ~Hext +λ ~M to find expressions for the
magnetisation of the Gd3+ crystal above and below Tc.

What is the ratio χ(300K)/χ(290K) for the paramagnetic susceptibility of Gd3+?

Determine the value of λ.

d) V2+ is also metallic, and remains paramagnetic until ∼ 5.27 K, where it undergoes a transition from a
normal to a superconducting state.

Let each Vanadium ion contribute with a magnetic moment ~µ, such that the energy levels of the system
in an external magentic field are EJz = −~µ · ~B = Jzg(JLS)µBB, where Jz are the asimuthal quantum
numbers, with values J, (J − 1), ...− J .

For simplicity, neglect the normal-superconductive transition, and assume that the system remains param-
agnetic all the way until 0 K. Assume the system to be in equilibirum, and employ a Boltzman distribution
on the form f = e−EJz/kBT to determine the relative popoluations of each ionic state, i.e. NJz/N , where
N =

∑J
−J NJz .

The magentisation of the system can be given as M =
∑J

−JMJzNJZ , where MJz = − 1
V

∂EJZ
∂B . Dedudce the

total magnetisation of the system using these relationships and the relative populations from above, and
show that this can be expressed:

M =

[
4 sinh(2µBB/2kBT )

2 cosh(2µBB/2kBT ) + 1

]
nµB.

Give a brief account for how the normal-superconductive transition will affect the magentisation and the
paramagnetic response in V+2 when you appraoch the transition temperature from above? Justify your
answer.
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