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Solution Problem 1. Phase transitions:

a) Discuss the terms “first order” and “second order” phase transitions.
Solution:
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b) What is meaning of an order parameter in the context of phase transitions? Give
examples of order parameters for real systems.
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Landau theory is a thermodynamic theory describing phase transitions, and this

theory considers the Helmholtz free energy f(n,T), where 1 is the order parameter,

and T is the temperature: Landau theory assumes that near the phase transition
temperature Tc, it is possible to expand the free energy in powers of 1, thus
f(n,T) = fo + e’ + esn’ + ean® + esn’ + egn® + oot Ca F

Assume that ¢y(T) = b(T — Tc), where b is a positive constant, and also assume that

€3,C45 €5, Chy vonens 5 Cliy vrernnnen are constants independent of T.

Consider the following cases:

c) ¢3 =0, cqis positive, and ¢, = 0 for n > 4. Does this case describe a first order, or
a second order phase transition? Without any detailed calculations, first sketch
and discuss 1n(T), and sketch and discuss f(n,T) for various T. Then derive the
temperature dependence of the order parameter for this case. Do you know of any
real systems that belong to this case? What difference does it make if c4 is
negative?

Solution:

In the following rename 1 to P:

(The solution is scanned from Strobl: Condensed Matter Physics)

Real systems:

Some ferroelectric transitions belong to this case. Some ferroelastics, etc.
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3.1.2 The Landaua Theory of Critical
and Nearly-Critical Phase Transitions

Figure 3.4 shows that a divergence of the dielectric susceptibility upon ap-
proaching the Curie temperature is also observed for the low temperature
side, Le., in the ferroelectric phase. Landau presented a way by which this
Lehaviour and also other properties of ferroelectrics can be understood using
& simple thermodypamic theory. The polarisation is the variable which con-
trols the phase transition; P disappears above T, while below 1, F begins
to increase. The value of P represents, for every temperature, an equilibrium
value in the sense of thermodynarmics and the equilibrinm condition can be
directly formulated. The requirement Is a knowledge of the Helmholtz free
energy s a function of the polarisation and the temperature, Le., of the ex-
pression
e

The equilibrium value of the polarisation at & particular temperature then
follows from the minimnm condition

af |

aF

=0 . (3.9)

o

Landan suggested that the Helmholtz free energy density in the region of the
Curie temperature be expressed as a series EXPATSIoN:

f=fot Y olhyp (3.10)
¥

Since the following must of course be valid
Py = f(—P} | (3.11)
only evep-order terrns appear o the expansion:
F=fo+ C"QPQ + tx;?"‘ + c‘ﬁpﬁ + . . (312

[ the discussion of the transverse-optical mode, the force constant a was i
trodiced Lo describe the restoring forces, which become active upon a relative
shift of the two parts of the lattice. This force constant determines the value
of the second-order term in the series expansion for the Helmholtz free energy
density:

i f , ,
é&”pfﬂ%é? wx () == 2epx & . {3.13)
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3.1 The Ferroclectric State 133

Sinee a becomes zero at the Curie temperature and then inereases linearty
above it the following can be written:

ey =bT ~T.) , with b>0 . (3.14)

Limiting the expansion to the next term then leads to the following expression
for the Helmhboliz free energy density

F=for bT = TP + e (3.15)

Figure 3.5 shows this dependence for a fixed, positive coefficient ¢, for three
different temperatures, namely one above T, one at the Curie temperature
and one below 7. The consequences are immediately recognisable: Above the
Curie temperature, the equilibrium is, as observed, at P = 0, while below 7.,
a non-vanishing vale for £ establishes itself — this is likewise in agroement
with what is observed. The latter corresponds to the permanent polarisa-
tion P,

Evaliating the expression yviekds the temperature dependence of the polar-
isation below To.. The minimum condition for the Helmholtz free energy leads
15

It follows that the equilibrinm value of the permanent pularisation is given by
= (2} - T} < 7
Fo,=F = wwiz;ww\ . {3.17]

f”%

Fig. 3.5, The Landau expansion for the Helmholiz fres energy density b the tran-
sition into the ferroslectele phase (77 = 7.} as well as for temperstures above and
below T... The case of a second-order transition.

134 3 Melecular Ficlds and Critieal Phase Transitions

fe,

Py o (T = T)% (3.18)

Hence, the polarisation which arises obeys a square ook Few .

L R T P .
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ey < ) and e =l

are selected, plots of the Helmholtz free euergy as a function of P have the
forms shown in Fig. 3.6. The consequences hero wre also inuediagely FECOR
nisable. For 7' = 70 the equilibrizm value of the polarisation is zero, while for
T < T.. the polarisstion has 4 finite valye, which is deteriined by the ming.
musn. The phase transition oceurs it the Curie temperatire T Asis evident,
& now-vanishing polarisation arises immediately at the phage transition, The
non-polar and ferroclectric phinse co-exist ui this point: both have the Hare
Helmholtz free energy.

f~1,

43

I

Fig. 3.6, The Landay expansion of the Helmbolz free energy density at the transi.
tion into the fervoslsctsic phase (17} as well as for temprratures above and below 7.
The case of 5 “wesldy first order” transition,
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d) c; is negative, cq4 is positive, and ¢, = 0 for n > 4. Does this case describe a first
order, or a second order phase transition? Without any detailed calculations, first

sketch and discuss n(T), and sketch and discuss f(n,T) for various T. Then derive
the temperature dependence of the order parameter for this case. Do you know of
any real systems that belong to this case?

Solution:

In the following rename 1 to Sy, and Tc to T*.

(The solution is scanned from Strobl: Condensed Matter Physics)
Real systems:

Isotropic to nematic transitions.

3.3.1 The Landau-de Gennes Expansion

What would be the form of a Landau expansion which describes the isotropie-
nematic phase transition in a qualitatively correct fashion? The answer to
this question was given by de Gennes. In order to describe the Helmboltz
free energy density as a function of the nematic order parameter and the
temiperature

f(Sivjﬂ}

the following power series expansion is to be used
§— fo=bT—T")S5 ~ 383 +caS; . (3.40)

A difference as compared to the power series expansions for ferroclectrics
and ferromagnetics is the inclusion of a third-order term, which appears be-
cause the symmetry has changed. While previously a sign reversal of the
order parameter left the Helmholtz free energy unchanged, there is a change
for a nematic liquid erystal. This becomes immediately clear upon consider-
ing an example. Sg = —1 /2 corresponds to an orientation distribution, where
all molecules have their long axes perpendicular to the director, with their
orientations being uniformly distributed in this plane. By comparison, the
structure is completely different for an order parameter Sp = +1/2: Here,
there is a wide distribution with a maximum in the director divection. Under
these conditions, it is clear that a third-order term must be included in the
Landau expansion for the Helmboltz free energy.
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The consequences are shown in Fig 314, which shows the dependence
of the Helimholtz free energy on Sy for three temperatures. The middle curve
corresponds ta the transition temperature, where the isotropic liguid and & ne
atic phase with o well-defined order parameter co-exist. At higher and Tower

temnperatures, there is of course only the satropic state aud ondy the nematic
state, respoctively

The Landan expansion in Eq. (3407 can be evaluated to determine the
position of the transition point. The following applies for the equilibrium
valie of 5o

= 0= 20T = T3Sy — 3e48% + ey S5 {441y

[(8y =08 = fo=fi5 = So(Tu)y = fa=0 , 341
which means that
0= BT = T80Ty )® — c3So(Tnid® # 4 8alTutt (3.43}

Combining FEas. (3435 and {3.41) leads immedintely ta an exprestion for the
order parameter al the phase transition:

3

STl = 2 13,44
2(23

T%Tﬁf
£ -

-
<~ T=T,
= v
. /
NFeT, f/
~
¢
5

Fig. 3.14. The Landan-—de Gennes expansion for the Helimholtz free energy density
ol & nemstic liguid erysial at the clearing point T as well as for temperatures where
conly the botropic (T > Tu) or only the sematic phase (T < 1 ai) exlsts,
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The situation at the temperature T is given by

2
. L7 - |
T =T = 5 . {3.45)
38 4%’(:‘4
Finally, it follows that the temperature dependence of the order parameter in
the nematic phase is described by

3 3es\: 2b e
) i T (O L ) 346
Sa §es + ((4&&) 4&£C }) ( )

As a thermodynamic theory, the Landau approach works with phenomenologi-
cal coefficients. 1f experimental data exist, these can be determined by a fitting
procedure. Further experimental results, for example, the dependence of Sy
on T, can then be predicted.

e) Assume that there exists an external field, X, which couples linearly to the order

parameter, 1, i.e. an extra term -nX must be added in the free energy expression

(i.e. use Gibbs free energy rather than Helmholtz free energy given above).
Derive an expression the susceptibility for case c).
Solution:

In the following rename n to P, and X to E.
(The solution is scanned from Strobl: Condensed Matter Physics)
G=f—EP=fo+bT -T)P*+c P~ EP . {3.19}

The minimum condition

g% = 0= —E + 25T ~ TP + 4cu I (3.20)
leads to | dE
= @CL = 0)=26(T - Te) + 1204 (3.21)
gaXx s

where Pl denotes the equilibrivmn polarisation i the absence of an M@m:m
field. Two cases can now be distinguished. For T' > Ty, there is Fog = 0. which
loads to {

R — 3.22}

This result was already obtained, via a different route. in FEag. (3.8 The Lan-
Plau expansion yvields now, though, an additional expression for the dielectric
' susceptibility in the ferroclectric phase, ie., for T < T.. Using the value for

Puy given by Eq. (3.17) gives

WT = T) s
LY PEET . (3.23)
£aX 2
and thus 1 }
Sy T m— (3.24
COX = BT - T

It can be seen that the expressions for the dielectric susceptibilities zﬁmw

and below the Curie temperature differ by a factor of 2. This agrees with the

experitment as is apparent from a look at Fig. 34 .
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f) Discuss the validity of the Landau theory for phase transitions.
Solution:

Cipitical Fluetuations. A further consideration of Figa. 3.7 and 38 shows
that while the prediction of Landan's theory reproduces the curves very weldl
averall, upon a closer examination, systemmtic differences are wbmerved, Ditfers
ppces of this ype are always found for seeond-order phase transitions, Some-
tiimes, thew exist, us i the example, over & wider temperature range, while,
in other cases, they are focused ou a very siiall region near T.. Landau's
molecular field theory actually loses its validity here. The origin for this
is. in principle, easy to understand, aud follows as a consequence of & foo-
damental property of critical transitions. The trigeer for the phase transition
i she faer et the restoring forces in the winterinl, which make the polari-
sntion or maghetisation generated by an exterual field disappear again after
awitehing off the external finld, becomie ever smaller upon approaching the
Chirie temperaturi. Tn this temperature range, a magnetisation or poslarisi-
tion can temporarily emerge without an external Feld, simply via thermal
fuctuations. Loeil regions form, iu which there is a preferred orientation af
the electric dipoles or the spins. They are not stable, but variish again. Thelr
fifwt bsier cepends on the weak but still preseat 1
are, the larger and longer-lasting the temporarily ardered pegions become. Tn
Landan’s theory, the stabilising setion is attributed soldly w the average valug
of the molecular field, the latter being expressed via the polarisation 17 or the
mpgnetisation M. IE the Huctiations are very strang, the average feld is oo
longer the decisive purameter, and Landau’s ehegry which s lased on this
Jwaedt 112 validity.

Avtually, it i also possibls to describe theoretically the reglon very close
to the Curie temperature, which s marked by strong finctuations. The basis
for this & & symmetsy property whiclk eritical fluctuations possess noar to
T pemely their selfsimilarivy. To this sange. magnetised or polarised reglons
of all sizes appear. without there buing a definite charpeteristic length, As
w conseguence fnmges of the varyiug msgnetic or polarization sbractare are
ipvariant upon changing the spatial resolution, Le., they abways have o similar
appearanve. [ ks exactly this property which is used in a4 rencrmalisation
group theory due to Wilson in prder w4 mnke procise siaterments abont the
changes in the order parameter and suscepiibility in the vienity of T It

fonmit thai power laws are always obtained for the wagnetisation,
Mo (T =T (3.36)
apd also for the susceptibilities below the Curle temperature,
woc (T, — T)~% {3.37)
aned above T, .
e {T—=T)77 . (3.38)

Renormalisation group theory provides algorithms by which the critical co-
efficients v, v and 7 can be calenlated. The results of these calculations are
in general in very good agreement with the observations.

1o spite of this, Landau’s theo intains i i
o [ this, L i's theory maintains its validity within the
limite: Its applicability begins when the fluctuation effect > Dlay

a large role and ¢ coular & N . s 1o longer play
ﬁeid,g be molecular feld takes over control in terms of the average
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Solution Problem 2. Fields, response functions and relaxation processes:

Consider a material for which one of the molecules may be in one of two states separated
by an energy barrier, E. At finite temperatures, the molecule in question changes back
and forth between the two situations (states) with a “jump” frequency between states
given by a so-called Arrhenius expression f = 1/t = 1, exp(-E/kgT), where 1o is a local
time characteristic for oscillations within one of the states, and kg is Boltzmann’s
constant. Assume further that by application of an external field, o, a local preference for
one of the states is introduced, thus resulting in a redistribution of the population of the
two states, and that this may be described by a simple Debye type relaxation process.
a) Use common sense to write down a simple linear differential equation describing

the simple relaxation process.

A creep experiment means application of constant external field ¢ at and for all

times after some time to, and °= 0 for t < to.

We define the response field as Ay = AJ(®) o, where AJ(w) is the frequency (o) -

dependent response function.

Show that the response field, Ay, for the case when a “creep experiment” is

performed on a sample of the material, may be written as

Ay(t> o) = AJ(0) o° (1-exp(-t/1))
Sketch and discuss the result as a function of time for various temperatures.

Solution:
In the following we drop the subscrlpts zx The solution is scanned from Strobl.
Arli — o) = ~
it is possible to describe the adjustment process following way:
dAy 1 .
B A ST E 4 (2.75)
= =~ (ath)
This Felaxation equation implies that o g orced from equilib-

vinm {here, this is achieved by applying o equilibrium at

a rate which Increases proportionally with the perturbation. The solution of
the differential equation is

. i f 7 _—
Aty = Ad ol (I — exp - ) {2,760
7

zzmi it cﬁwe ribes an wigtm Ment process with a tmw CoEtant v

87 5 )
[/
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b) Perform a dynamic experiment as a function of external applied frequency
(assuming constant force amplitude) on the same material. Derive the expression
for the frequency dependent complex compliance response function. Sketch and
discuss the result as a function of frequency and temperature.

The real and imaginary parts of the compliance are often referred to as the storage
part and the loss part respectively. Discuss the physics behind this distinction.

Solution:

Conzider now the dynamic-mechanical experiment. The relaxation egus-
tion can also be applicd In this case. Replacing the thne-independent stress

ol by
o (B = ol exp{—iwt) (2,77}
gives
dd~ 1, \ Co .
= (Ay(i) - Adall expl—iwt)] . (2.78)

A solution with a periodically changing extension Q48 is required, and we
thersfore write

Arit) = o' [AT (@) +1AT (wif expl—iwt) . {299

This leads to the following expression for the complex compliance AJ{w)

| o AJO) n
AT (W) + 1A (w) = Em%m’f; (2.80)

Al AJwr

1k adr?

{2.81]

Figure 2.16 shows the frequency dependence of AJ{w) and AJ"(w). The

10 LR

a8 08 e

0& I
> 5
- -1

04 G4

oz 02

[e34] 4 &1 & ; 4 [s31} i § - y

Bt 0.1 1 10 1o ooy G 1 1n 100

a3 19

Fig. 2.16. The real and imaginary partz of the dynamic shear compliance for a sip-
ple relaxation process.
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he imaginary part, for & jogarithmic frequency scale, cor-
jataetric “Lorentzian' enrve s apparent i it 15 re-expressed

Ad
10~ sl 4 ToRelar

AT (== {2.82)

¢ conclusion can be drawn from this result, mmeiy that the

< peelrs when

(2.83)

wr =1

es the exel-
e condition,
our example of
he junp rate

tly when the frequency of the external force wh
corresponds to the relaxation rate =1 Around
decreases in a step-like fashion from one to %
whexyl side groups, the relaxation rate s ide
ich the side groups change between the two p
, emiphasised that the spphed force does no
rmodynamic equilibrivm, jumps between the :
at the same rate, and this determines the time
renrt to external changes. Thus, dynamic-meclan
e investigation of the dynamics of conformational o
termination of the time associated with & particul
therefore, sometimes referred to as relaxation

The temperature-dependent change in the rate
i chair and boat conformations can be determine
 tion of the loss maxima in Fig. 2.15. An analysis 8
 Jependence of ihis process is consistent with the

temperature

-t Ash (2.84)

Tl eRp -

RT
& the energy
nformaation

A value of 47 & moi™ ! is obtained for the activat
barrier which must be overcome during the trans
fo the other.

010 |-
= ¥
>~
005
0.00
107 10° 10 10* 10° 10
w2z s

Fig. ?.15. The frequency dependence of the im‘w part of the dynsmic sheay
complianee (J' 22 const}, as messured on poly(cyclohaxyhuethacrylate) at different
temperatures in the glassy state (from Heijboer [14])
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I . .
n the following, replace AJ with Dy, and y with e,,, we drop the zz subscripts for

simplicity. The solution is
nplicity. The solution is scanned from Strobl.

D;mmnit:»mefrhaxtical experiments have the advantage, as compared 10
time-dependent experiments, that they provide & partiolar physical insight.
During the deformation, work is done on the sample by the external force.
On the one hand, this increases the potential energy, on the other hand. it
lesds to the generation of heat. The real and imaginary parts of the dynamic
compliance correspond exactly to this separation. That this is so can be eas-
ily demonstrated. It is only necessary to analyse the pawer provided by the
external force. Taken per unit volumne the power is given by

dw CARe Y .
T {oeedt))—5; {2.53)

(for the caleulation of a product a transition from the eomplex potation o
the actual physical quantity given by the real part is necessary). The time-
dependent extension is given by

eualt) = Dy, expl—iwt} = (0 + 1Dl feos{wt) - isinfwt)l o {2.54)
The real part is then given by
Rieas(t)) = Dio? cos{wt] + Dla? sin{wt) . (2.55)
Therefore, the following expression iw ohtained for the power
dw 4 N 0Py inf 0o . fy o
Sl gl cus{wl ) owoy LDy sinfwt) + W, 0 coslwty) {2.56)

dt
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or, upon applying a well-known trigonometric relation

, 0 32
(j;; = - «iﬁfz-ziwul?{ sin(2wt) + (o3, wD! cos*(wi) . (2.57)

It is apparent that there are two contributions to the power. The first term
oscillates between positive and negative values with double the frequeney of
the stress. This expresses an exchange: Work, which is stored up in the sample
during a quarter period, goes back out in the next quarter period. This part
clearly describes the storing and release of elastic potential energy. Its magni-
tude is given only by the real part of the dynamic compliance. The second part.
which is proportional to the imaginary part, behaves completely differently.
It describes a take up of power which is always positive, with a time-averaged

magnitude
dw 1
EE} = 5(0%)%wD] . (2.58)

What does this mean? Generally, the internal encrgy of the sample U changes
as work is done and heat is exchanged according to

Al = Vdw +dQ . (2.59)

If the experiment is, as usual, performed under isothermal conditions, there
is no change in the internal energy of the sample. The supplied work must
therefore be completely released as heat:

P {2.60)
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Solution Problem 3. Microscopic dynamics:

a) Discuss the physics contained in the Einstein relation for the “self-diffusion

coefficient”
Ds = kBTV

,where kg is Boltzmanns constant, T is the temperature, and v is the mobility. In
the discussion, consider that it can be shown that 6D = < | r(t) | >/t which is the
mean squared displacement achieved by a diffusing particle per unit time, t.
Consider a suspension of non-interacting colloidal particles, and assume the
following:

e a particle density gradient Vp resulting in Fick’s law for the diffusive
particle current jp = -DsVp.

* an external force (for example gravity) f= Vu,y, where u is the potential
energy difference set by the external force that drives a particle current j; =
pvi.

e at equilibrium, the particle density p = peq = exp(-upo’ksT) according to
Boltzmann statistics

Using these assumptions, show how the Einstein relation can be derived.
Discuss the difference between the “self-diffusion coefficient”, Dg, and the
“diffusion coefficient”, D.
Solution:
Scanned from Strobl:
5.2.2 Mobility and the Einstein Relation

It might seem at first that nothing firther can be said about the value of
a self-diffusion coefficient. In fuct, this is not the case. Finstein derived, on
the basis of a thought experiment for the case of non-interacting colloidal par-
ticles in solution,; an expression which can be mmediately used. The thought
experiment concerns the situation of a colloidal solution in a potential field,
which can be simply the gravitational field, or, in the case of charged parti-
cles, slso an electric field. It is generally observed that a colloid in solution
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raves, wiider the influence of an external lorce, at a copstant velocily, which
is proportional tw the force:

vl (5.161)
The proportionality factor

© ‘
=g (5.162)

ig referred to as the mobility, while its inverse
R S .
(=== {5,163}

voow

has the mweaning of a coeflicient of friction,

In spite of the motion caused by the field, there & a stationary state,
e ), for the density distribution of the colloids. It is given by Bolzmann
statistics as

Peq X f\p%ﬁ A (5.164)

Einstein explained the existence of this stationarity in terms of the existence
of a dynamic equilibrinm between two compensating particle currents, There
is a particle current density

di= po = pof (5,165}

which s cansed 1o How by the forces of the potential feld. With the force

R TR (5166}
it follows that
Jr= =NV tpee . (h167}

The second particle current o the opposite divection is driven by the gradienss
in the particle density — Fiek's law applies in this case. For nou-interacting
colloids, it i3 not necessary to distinguish between D and [, e,
D=0, .

and the diffusive particle current is then given as
At equilibrium, Le., for p = g, the two currents compensate each other:

Jp+ic=0. (5.169)
Tt, thius, follows that

DN paq + poqtVitpe: =0 {5.170)
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Upon introducing the squilibeinm distribution, Eq. (5.164), a generally ap-
plicable relation between the self-diffusion coefficient and the mobility is ob.

tained. It is referred to as the Einstein relation and is given as
Dy = jegTr {5171}

On the right-hand zide, the mobility, a resciion parameter, describes the e
fert exerted by au external foree of arbitrary nature on the motion of a colloid
i sohition. The result of the setion is a motion with constant velovity, The
left-hand side of the relation containg a parameter which has a purely sta-
tistical character it deseribes the mean sauared displacement of a colloid
whieh wonld result in the absence of any external force, being solely driven by
collisions with the solvent molecules. The Einstein relation states that these
very different paramerers arve linked by the factor ka7

With the help of the Finstein relation it is passible to make a further step.
Stokes’ Taw, which s derived using the lnws of hydrodvrmmies, specities the
size of the foree which arises when a spherical particle wndergoes a motion
with a comstant veloglty  through o ligpiel with viseosity . The foree deponds
ant the radius of the pariiele accarding to

Febriine | {5.172)

Since the viscous force equals the edernal driving foree, Stokes’ law provides
an explict expression for the mability of a colloid. Inserting it into the Einstein
refation yvields

kT
© 6wRy
This is an equation, which ean be divectly used in order to determine the
self-diffusion evefficient of a colloid of radius R in & solution with viscosity g
it & temperature T
The question then arises as to whether thi equation also sives sensible
values when applied to the ease of diffusion of individual modecules in a molie-
alar liguid, using, together with the macroscopic viseosity, an estimate for 17,
namely the molecular radius, which is & varisble in the nm range. ln fact,
& comparison with experimental results reveals that the so-obtained results
wre geverally correct 1o at least within an order of ragnitngde.

(5.173)

The self-diffusion coefficient D, and the diffusion coofficient D in Fick's
law are necessarily the same for the case of free, non-interacting colloids. The
situation changes when interacting particles are invelved. In Fick's law, the
gradient of the particle density is then to be replaced by the gradient of the
chemical potential, and D becomes a cooperative diffusion coefficient,
which differs from the self-diffusion coeflicient. The definition of the latter
remnains unchanged; D, always deseribes, according to Eq. (5.147), the mean
squared displacement per unit time.
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b) The probability of finding a diffusing particle at distance r(t) at time t, assuming
r(t=0) = 0, is given by the time-dependent auto-correlation function g;(r(t),t) =
(1/(4nDt))*?exp(d r(t) /(4Dst)) which follows from a Greens function solution of
the diffusion equation for g;(r(t),t).

For such non-interacting particles the time dependent structure function S(q,t)
equals the Fourier transform of g;(r(t),t), where the scattering vector q is the
difference between the outgoing and incoming wave-vectors respectively.

Discuss (in terms of words and equations) a light-scattering experiment which
may be used to measure Ds for non-interacting colloidal particles in solution.
Solution:

Scanned from Strobl:

5.5.2 Dynamic Light Scattering in Liquids

Cnli@ida} Diffusion. Figure 5.22 shows the result of a dynamic light scatter-
g experiment performed on s dilute solution of pt:alysxy“‘wna in m%’ue@ Zf‘he
presented data were obtained after a subtraction of the sr:&ﬁﬁ:‘idg due iu ure
mimmﬁ from that observed for the sohution, such t}mi‘tl;e&y l"%&r&s&;? zélxg
the dynamic scattering effects due to the polymer molecules. I’Pf; Wé’ﬁ; ;tatsegi
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Fig. 5.22. Dynawmic light seattering of a dilute solytion of palystyrens in toltens,

Tim&deper{dgnt scatbering hanction for different scatlering vectors (above), The do
pendenes of the decay constant o the scattering vector (below). o
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above chat the dynsmnie lght scattering experiment vields the internusdiale
scattering law 5{q. () The upper part of the figure shows the tme-dependence
of Slg. 1} as measured for different scattering angles. Fach of the curves can
be described by s stmple exponential function, with it being apparent that the

characteristic thme 7 becomes ever smaller as the scattering angle neres
L= Es3

SE.
fan the loweer part of the figure, it is seen that a sgquare law 75 x g7 is obeyed.

The cause and significance of this result are readily understood. A pole
mer madecule i dilute solution exhibits a diffusive motion which is indepen-
demt from that of the other polymer molecules, The time-dependent anto-
correlation fanction g {r, 1} which was introduced in Sect. 5.2 can be used to
deseribe this motion, According to Eg. {52497, g, {r ) s a part of the wan
Hove [unction, indeed, in the absence of pair-correlation functions, it is the
ouly contribution, S(g, 1} can be calenlated using Eq. (5250, msking use of

J—

the calculated expression (BEa. (3.1571) for the auto-correlation function

i
o
E i

(43 0372 Aint

Upon realising that the pair corvelation term gz, i given by

it = exp -

By = p (5261

i the case of g dilute solution o the absence of nteractions between the
polyvmers, it [ollows that

Slg.th = / exp( —~igrig ir Odr = exp(— Dt . £5.262)
W

This corresponds exactly (o the observed experimental behavieur, v« %
Muareover, the theoretical analysis has revealed that the self diffusion coeffi-
cient Dy can be determined from the slope of the lne i the figare,




