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94 2 Moduli, Viscosities and Susceptibilities
2.2.2 Orientational and Distortional Polarisation

The polarisation of liquid or solid matter in an electric field arises from several
contributions, which differ very markedly in their frequency dependence. This
is illustrated by the schematic plot of the frequency dependence of the real
part of the dielectric susceptibility in Fig. 2.17. A first contribution, which
can be very strong, is found for liquids made up of polar molecules. In the
absence of an external field, the permanent dipole moments carried by all the
molecules are distributed over all directions. In a field, there is a preferred
orientation and this results in an orientational polarisation Py & £gXor-
It is clear that at too high frequencies the molecules will no longer be able to
follow the field, because of their moment of inertia. Empirically, this is found
to occur when the frequency significantly exceeds 10'2s™!. After this, as is
indicated in the figure, no further orientational polarisation is observed.

A second mechanism which contributes to the polarisation can be observed
in ionic crystals, molecular crystals and molecular liquids. In molecules, there
are always charge centres. An electric field can push these centres of posi-
tive and negative charge in opposite directions and, in this way, induce dipole
moments. Particularly strong polarisation effects are to be expected in the
infra-red region, since these frequencies correspond to the eigenfrequencies of

Tl el 1o

|

Fig. 2.17. A schematic representation of the frequency dependence of the real
part of the dielectric susceptibility: The contributions due to dipolar orientation
(Xor, up to the UHF region) as well as a deformation of the nuclear skeleton and
displacements of the electrons (xa, in the IR and UV region). '
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.

the vibrations of the molecular skeleton. As is indicated in the figure, this po-
larisation mechanism is effectively switched off when the molecular vibration
frequencies are exceeded.

There remains a final polarisation mechanism which is always present in
the case of atomic systems, namely the displacement of the electron shells
relative to the nuclei. The eigenfrequencies of the displaceable outermost elec-
trons lie in the visible light and ultra-violet region. Polarisation effects are
thus particularly large in this frequency range. In the visible range, the re-
fractive index n is usually used as the material-specific parameter in place of ¢
or x. n is related to & and v by means of the Maxwell relation

n=c=1+y . (2.93)

Like € and x, n is in the general case a complex variable.

The frequency dependence of the orientational polarisation and that of
the distortional polarisation P; €oXd — this encompasses the other two
contributions ~ differ in a characteristic manner. While only a simple decay is
observed for the orientational polarisation, resonance effects are observed for

the contributions to the distortional polarisation. USThg ¢lassica equations; Tt

is possible cribe i astratghtforward-manndr the frequency dependence

of both processes. The orientational polarisation P, is correctly descri

using the following relaxation equation:
/ (2.94)
ced for the treat-

dP,, 1
constant 7 now has

a = _‘;(Por - EOXorEO) .
The staxting point is identical with that which was intro

olecule. The solution of

can be directly used again:

ment of awelastic deformations in Eq. (2.75). The ti
the meaning\of the reorientation time of the polar
the relaxation ®guation has been given above a

a static fleld Fy, an (;5 ntational polarisation appears
y”'f f‘
= £oXorFo b1 — exp —=
r 0Xor %(é{ p 7_)

Upon switching

according to

For a field oscillating at a Yequeficy w, the (complex) amplitude P, is given
by

(2.95)

€0Xor -~
—Fy . 2.96
1—iwr ? (2.9 )

This leads for the regl’and imagina

ceptibility to

part of the orientational dielectric sus-

(2.97)

Plog# of these functions have been shown previousINin Fig. 2.16. Evidently
the situation here again corresponds to a simple relaxatjon process. In fact,
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d2py dPy
- = —T— — P, E . 2.
P 5 d + £0Xd (2.98)
It differs from the relaxation equation through the term on the left-hand side
which takes the inertia effects into account. Equation (2.98) is the equation of
motion for a driven damped harmonic oscillator. For a varying electric field
®,

N\ E(t) = Eqexp(—iwt) (2.99)

%,

2
+

there exis\t\é\a stationary solution for Py,
'“\\ Py(t) = Py exp(—iwt) . 2.100)

Inserting it into \Eq. (2.98) leads to

(—MZT’Q —iwr + 1) Py =coxaEy (2.101)

o
expression for the frequency-dependent distortional

B, ooxal) Fisgxiw) 7 (2.102)
0 y

£0Xd <1 - wz},{“?) + E0XaWT
< + 1
(1—w2r?)? ¢ cg;”%f (1- w27’2)2 + w2r?
e Y

(2.103)

In formulating this equation,/ﬁﬁe reso\ﬁ nce curve associated with a single
oscillation process of the melecular skeldton or of the electrons relative to
the nucleus is considered,; the total curve fonall distortional polarisation pro-
cesses corresponds to the’sum of a large number of such contributions. The
real part, for each indjfidual contribution, has“the form shown in Fig. 2.17,
while the imaginary/dart is a bell-shaped curve
eigenfrequency and’a width being given by 7.

In Sect. 2.1, i was shown for the dynamic complidnce that the imaginary
he loss process, i.e., the part of the work which is dissipated.
The same ig"true for the polarisation induced by an eletic field, and this
regardless‘of whether the orientational or the distortional paxt is being con-
cerned.‘/ghe imaginary part of the dielectric susceptibility specifies always to
what extent the energy of the electromagnetic field is dissipated when inter-
actin‘g/ with the material. Thus, x” (w) represents the absorption spectrum of
a sample.

The Local Field — The Clausius—Mosotti Equation. Tor liquids made
up of polar molecules, i.c., molecules with a permanent dipole moment, we find
all the different contributions to the polarisation. We consider now the ques-
tion: What value for the dielectric constant & would be measured in a capac-
itor under static conditions? Both the orientational and distortional part are
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proportional to the electric field strength o at the location of the molecule —
that which acts there to polarise the molecule — and we express this as

Por = p/BorEloc s (2104)

Pd = pﬁdEloc . (2.105)

In addition to the particle density p, the equations contain the coefficients
Bor and (4. They are termed polarisabilities, and describe in an empirical
way the reaction of an individual molecule to the electric field. The total
polarisation is given by

P = pBBi. | (2.106)

where the polarisability £ contains now the contributions from all mechanisms.

At first, it could be thought that the electric field in the capacitor, which is
given by the voltage and the plate separation, acts directly on the molecule and
is identical to Ejoc. This is not, however, the case. Figure 2.19 shows the way
one must proceed in order to determine the local electric field. Think about
the selection of a particular ‘on-molecule’, placed in the centre of a sphere
of mesoscopic size with a radius a. This opens up the possibility of explicitly
considering the fields arising from the neighbouring molecules, which can be
separated from the continuous charge distribution in the dielectric and on the
capacitor plates. The figure illustrates that the local field can then be split up
into four contributions:

Fioe = EO(UP) + E1(0M = P) -+ EQZ(CTL) + B3, . (2.107)

All fields are oriented in the same direction, which is here chosen to be z. Eq
is the homogeneous field which is generated by the charges on the capacitor
plates, with the surface density being op. A second homogeneous field, Fy,
is due to the surface charges of the dielectric (charge density o) directly at
the plates. The two fields together, £y and E7, which act against each other,

+ |- . + 11 -
+ E= Egt E4 -
+ —_ -
e + |1 -
+ = oL=P cos 9 -
+ P -
+ - + 1] -
+ -
Or O -
+1- + |1 -

Fig. 2.19. The sources of the local electric field at the location of a molecule inside
a block of material in a capacitor.
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determine the average field strength F within the capacitor. As will become
apparent from the following discussion, it is the contribution Es, from the
charges at the surface of the sphere which is decisive for the local field. This
surface charge density, oy, is proportional to the polarisation and depends on’
the angle ¥ according to

op = Pcosd . (2.108)

The fourth and final contribution to consider comes from the fields arising
from the molecular dipoles inside the sphere; these add up to give Fs,.

Es, is referred to as the Lorentz field and can be calculated in the
following way. An amount of charge dQ on the surface of the sphere gives
rise to a contribution to the Lorentz field of magnitude

1 d@
—_ . 2.
dmeq a? (2.109)

dE, =

Only the component in the z direction has an effect, and its magnitude is
given by
de

TEY G2

dFs, = cos?) (2.110)

Using the spherical coordinates ¥ and ¢, the integration over the charge dis-
tribution on the surface of the sphere can be directly carried out, and gives

1 dQ 1 cos v 5 .
E2:47T€O//cos ?ZM// e Pcost a® sinddide
@ 9 » 9

2r P 1
= 477:60 ‘/coszﬁsinﬁd'z?v: gg;P . (2.111)
9

This result shows that the Lorentz field Ej is, first, oriented in the same
direction as the external field E and, second, proportional to the polarisation.

It can easily be shown that the field E5, due to the molecular dipoles
within the sphere disappears in the case of isotropic liquids and also symmetric
crystals, and this applies to the figure. If the molecule is located at the position
r; inside the region cut out by the sphere and carries a dipole moment P, the
strength of the field Ey at the centre of the sphere is given by
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322 — 12
By, oc (Y~ (2.114)
j J
Upon expanding the numerator, it follows that
322 — g2 —y? - 22
B, oc (30— YiTEH N g, (2.115)
j J
since the following is true from symmetry arguments:
2 2 2
7\ — i\ J
Z 4)= <= Z = (2.116)
PR P

b J

Putting all the different contributions together yields the sought-after re-
sult: The local field which acts upon an individual molecule is a sum of the

capacitor field E and the Lorentz field:

1
Bioc = E+ —P (2.117)

380
The polarisation can now be calculated by substituting Eq. (2.117) into
Eq. (2.106):

P = pBEwe = pB (E + -1—P> (2.118)

360

P appears on both sides of this equation, which indicates that a feedback

mechanism is acting. The following expression is obtained for the dielectric

constant P 5
P
N — -1 2.119
E = 1= 35 eo(e —1) (2.119)
Solving for the polarisability gives
1 e—1
—pf = 2.12
3e0 op g+ 2 ( O)

The above discussion has been restricted to monomotecular liquids; in the
general case, different types of molecules with densities p; and polarisabilities
3; can exist, and Eq. (2.120) then becomes

1 e—1
—_— G, = —— 2.121
3eq 2]: ,03,6] e+ 2 ( )

This is referred to as the Clausius—Mosotti equation.
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128 olecular Fields and Critical Phase Transitions /
dependent inkeraction forces favour a parallel arrangement of »t.h’éﬂﬁ)dﬁke
molecules in a hematogen material and, thus, create a m()leg;u*l’éfr field which
can maintain itself, The spontaneous self-organisation begiﬁfé“at the transition
from the isotropic liquid into the nematic phase. The order parameter here is
the variable S, which\characterises the degree ofgpff’éntation.

The fourth examplé\is of a completely (jjfférent nature and deals with
the phase behaviour of bihary fluid polymef mixtures. If the composition of
the mixture is suitably choseh, a transiﬁidﬁ from the mixed homogeneous state
into a two-phase structure occut ig,a:’éontinuous fashion. The difference in the
composition of the two phases \yh‘iL form on crossing a critical temperature is
initially infinitely small angi,wtﬁen gradually grows. It is this difference which
assumes, in this case, the role of the oxder parameter. Order is generated
through the sepa,ratgpﬁg of the homogenous mixture into two different phases.

By means of these examples, we will recognise the common features in
second-order phase transitions, or as is also said exitical phase transitions;
the changqsf"fn properties near the transition teﬁ%@\l“\atture occur in a char-
acterist}eﬁﬁanner. Second-order phase transitions are
undgﬁ%ood. A large proportion of observations can be destribed using a simple
t})éfmodynamic theory which was developed by Landau. It

3.1 The Ferroelectric State

Equation (2.119), which was obtained in the derivation of the Clausius-
Mosotti equation, shows immediately that a polarisation of matter can sta-
bilise itself and gives the criterion for this. The dielectric susceptibility diverges

for

_ P8
B 380
A divergence means that the external field which must be applied in order to
generate a definite polarisation becomes ever smaller and finally disappears.
The basis of this phenomenon is the Lorentz field which is in the same direc-
tion as the external field and always amplifies it. For the condition described
by Eq. (3.1), it is exactly strong enough for a self-stabilisation. This follows
immediately from the equation

1 (3.1)

P
P =ppBE,, = pf—» . 2
PP, Pﬁggo (3.2)

‘The condition for the transition into the ferroelectric state is thus solely a suf-
ficiently high polarisability or atom density in the solid.
3.1.1 Transition Scenarios

Figure 3.1 shows as an example the structural changes which arise for
BaTiO3 — a crystal with the perovskite structure — upon the transition into
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Flg 3.4. LiTaOs in the region around the Curie temperature: Temperature depen-

* dence of the (inverse) dielectric constant (from Lines [20]).

1
552 piBi=1—c(T-T,) . (3.4)
J

This starting equation suggests itself. Above T., the expression on the left-
hand side becomes less than the critical value of one and this is expressed here
in the simplest possible way, by using a linear term. Using now the Clausius-
Mosotti equation, we obtain

e—1 1
S Bi=1—cT—T,) . D
T3 LA =TT (35
It, thus, follows that
3
and, therefore, .
1
) .
£+2x T (3.7)
For €, x > 1 this becomes
€AY X ! (3.8)
ST '

This is exactly the behaviour shown in Fig. 3.4 by the dielectric constant for
T>1T..

For the first example of BaTiO3, a finite spontaneous polarisation imme-
diately establishes itself at the Curie temperature, which must of course be
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Orientational Polarisability. The orientation of the dipoles in a polar lig-
uid in a static electric field is incomplete because of thermal rotational motion.
The higher the temperature, the lower the observed degree of orientation. The
form of this dependence can be directly calculated. First, it is known that the
potential energy u of a molecule with a permanent dipole pg in an external
field of strength F).. depends on the included angle ¥ according to

U= —pgFioc cost . (2.122)

The orientational distribution function follows from Boltzmann statistics, as

ocC 29 .
wsin¥dpdd o« exp — —k—?—L—— sinvdpdd = exp M sinddepdy  (2.123)

sT ksT
(wsinddedd is the fraction of dipoles in the angular interval ded?). From
this, we obtain the orientational part of the polarisation P, as

PoFoe cos

T 27 sin 9do (2.124)

1 i
FPor = ppo (cosd) = PPo—Z / cos ¥ exp
0

(as always, p denotes the particle density). The partition function 2 is intro-
duced for normalisation purposes; it is a function of the variable

Do Fioc
= ¢ 2.12
T (2.125)
and can be calculated:
Ky
Z(z) = /exp(x cos )27 sin ¥ddd
0
27
= ?[expx —exp(—z)| . (2.126)
It can be recognised that P,, is given by
1dz
Por = ppg=—-—= . 2.12
o ,01002 dx ( 7)

To obtain the orientational part of the polarisability, 3., expand Z as a power
series and keep only the lowest order terms

e
Z=dry E (2.128)
This leads to
P ppo = p g (2.129)
or ~ pp03 - pngT loc -
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and, thus, to the following expression for Bor

P
or — . 2.1
g kT (2.130)

The total polarisability of a polar liquid is a sum of the distortional part fa

and SBor:
2

B =pa+ ,55]:1, : (2.131)

This result shows that temperature dependent measurements using the Clau-
sius—Mosotti equation (2.121) provide a means of determining 4 and po.

2.2.3 The Piezo Effect ;

y,
subject of the first section of this chapter was the deformatif@/n which
results from the application of a mechanical field. The second ;@é&tion then
discusded the polarisation which arises due to an electric fiefd: There are
some crygtals, where cross correlations are observed in the’Sense that, first,
mechanicahstresses cause not only deformations but also generate polarisa-
tion, and, sedqnd, electric fields do not simply polarise the sample but also
cause deformatigns at the same time. This is refg,:rﬁad to as the Piezo effect.
The Piezo effect idof technological importanc/efﬁnd has been broadly applied.
The most important, material in this respect is quartz. Small single crystals
-sound sources, ;stfabﬂisers in oscillating circuits — in
this application, they ade found in alm%st all watches, and transmitting and
receiving devices — or as positioning’elements in situations where a precision
in the nm or A range is requireds The construction of an atomic force micro-
scope, in which quartz crystals /re used to shift the cantilever and to make it
oscillate, would be unthinka};ﬂe ithout the piezoelectric properties of quartz.
In addition to quartz, poly‘(vi.nyli enefluoride) is becoming increasingly more
important. If a foil ma}dé from this polymer is stretched at high tempera-
tures, where the chains are sufficiently mobile, in an electric field, and then
cooled rapidly to rgém temperature, the electric dipoles carried by the CFs
groups retain a Ee‘imanent preferred dirégtion. The so-achieved permanently
polarised foil shows a piezoelectric effect, which surpasses that of quartz. In
order to use }E’: thin-layer electrodes are placeti on both sides of the foil. Upon
applying a/oltage, changes in the thickness and also the length and width
are achieved. As an example, this allows the congtruction of spherical loud
speakeyrs.
I’order to describe how piezoelectric materials funsgion, it is necessary to
expénd Egs. (2.87) and (2.4). Equation (2.87) is replaced\by

of quartz serve as ult

P = eoxE + di0ss (2.132)
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132 3 Molecular Fields and Critical Phase Transitions

associated with a jump to some distinet displacement of the two parts of
the lattice. The other two examples show that this is not always the case.
For SrTiO4 and LiTaOs, the polarisation sets in continuously at the Curie
temperature, beginning with P = 0.

3.1.2 The Landau Theory of Critical
and Nearly-Critical Phase Transitions

Figure 3.4 shows that a divergence of the dielectric susceptibility upon ap-
proaching the Curie temperatuie is also observed for the low temperature
side, ie., in the ferroelectric phase. Landau presented a way by which this
behaviour and also other properties of ferroelectrics can be understood using
a simple thermodynamic theory. The polarisation is the variable which con-
trols the phase transition; P disappears above T., while below T¢, P begins
to increase. The value of P represents, for every temperature, an equilibrium
value in the sense of thermodynamics and the equilibrium condition can be
directly formulated. The requirement is a knowledge of the Helmholtz free
energy as a function of the polarisation and the temperature, i.e., of the ex-
pression
fPT)

The equilibrium value of the polarisation at a particular temperature then
follows from the minimum condition

of

55| =0 (3.9)

eq

Landau suggested that the Helmholtz free energy density in the region of the
Curie temperature be expressed as a series expansion:

f=fo+ }:cj(T)Pﬂ' . (3.10)

Since the following must of course be valid
Py =f(=pP), (3.11)
only even-order terms appear in the expansion:
f=fo+coP?+ caPt +cgP®+ ... . (3.12)

In the discussion of the transverse-optical mode, the force constant a was in-
troduced to describe the restoring forces, which become active upon a relative
shift of the two parts of the lattice. This force constant determines the value
of the second-order term in the series expansion for the Helmholtz free energy
density:
0% f
oP?

(P=0)=2c0xa . (3.13)‘
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3.1 The Ferroelectric State 133

Since a becomes zero at the Curie temperature and then increases linearly
above it the following can be written:

co=b(T~T.) , with b>0 . (3.14)

Limiting the expansion to the next term then leads to the following expression
for the Helmholtz free energy density

f=fo+ 0T —T)P? + caP* . (3.15)

Figure 3.5 shows this dependence for a fixed, positive coefficient c4 for three
different temperatures, namely one above T, one at the Curie temperature
and one below T¢.. The consequences are immediately recognisable: Above the
Curie temperature, the equilibrium is, as observed, at P = 0, while below 7,
a non-vanishing value for P establishes itself ~ this is likewise in agreement
with what is observed. The latter corresponds to the permanent polarisa-
tion P,.

Evaluating the expression yields the temperature dependence of the polar-
isation below Tt.. The minimum condition for the Helmholtz free energy leads

to:

of f

97 =0=2b(T —T.)P +4c, P* . (3.16)

or
It follows that the equilibrium value of the permanent polarisation is given by

b(T. —1T)
2 _ p2 _ e ;
Pog=F = e (3.17)

f—1,

T<T,

0

P

Fig. 3.5. The Landau expansion for the Helmholtz free energy density at the tran-
sition into the ferroelectric phase (T' = T¢) as well as for temperatures above and
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ie.,

|Py| o< (T —T)Y? . (3.18)

Hence, the polarisation which arises obeys a square root law.

For the calculation of the dielectric susceptibility, equilibrium states are
sought which arise in the presence of a given electric field. These are also
determined by a minimum condition, but this time with respect to the Gibbs
free energy. We choose the reduced form §, which is given by Eq. (A.11) in
Appendix A:

G=f—EP=fo+bT —T.)P?>+csP*—EP . (3.19)

The minimum condition

g—% — 0= —E 1+ 2(T ~ T,)P + dcs P° (3.20)
leads to L dE
= a_lgw =0) = 2b(T = To) + 12¢4P2, (3.21)

where P,y denotes the equilibrium polarisation in the absence of an electric
field. Two cases can now be distinguished. For T > T¢, there is Poq = 0, which

leads to
1

X T ONT — Ty

This result was already obtained, via a different route, in Eq. (3.8). The Lan-

(3.22)

“dau expansion yields now, though, an additional expression for the dielectric

susceptibility in the ferroelectric phase, i.e., for T' < T¢. Using the value for
P.q given by Eq. (3.17) gives

=2(T - T.) + =1

3.23
£0X 2 ( )

and thus
1

X T (T —T)

It can be seen that the expressions for the dielectric susceptibilities. above
and below the Curie temperature differ by a factor of 2. This agrees with the
experiment as is apparent from a look at Iig. 3.4.

The square root law for the emergence of a polarisation upon going below
the Curie temperature, as predicted by Landau’s treatment, describes second-
order phase transitions. The law is obviously not applicable to the transition of
BaTiOj3 into the ferroelectric phase, where a finite polarisation is immediately
established. However, a change of the parameters in the power series expansion
for the Helmholtz free energy also allows this transition to be described in,
a qualitatively correct fashion. This is achieved when the following form is
chosen:

(3.24)
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f=Jfo=0(T —T*)P?* + cyP* + s P° . (3.25)

T is a temperature which lies somewhat below the temperature 7. of the
phase transition. If, in addition,

cqg <0 and cg >0

are selected, plots of the Helmholtz free energy as a function of P have the
forms shown in Fig. 3.6. The consequences here are also immediately recog-
nisable. For ' > T, the equilibrium value of the polarisation is zero, while for
T' < Tt, the polarisation has a finite value, which is determined by the mini-
mum. The phase transition occurs at the Curie temperature T,. As is evident,
a non-vanishing polarisation arises immediately at the phase transition. The
non-polar and ferroelectric phase co-exist at this point; both have the same
Helmholtz free energy.

It can be easily realised that the susceptibility is generally linked to the
curvature of f(P) at the minimum, i.e., that

2 -1
£0X X (%%(Peq)) (3.26)

is valid. A consideration of the form of the curves in Fig. 3.6 reveals that
there is now no longer a divergence. For BaTiO3, the transition into the ferro-
electric phase is associated with a jump-like change and thus corresponds to
a first-order phase transition. The course of the transition deviates, however,
from the normal case. The distinctive feature is that the phase transition is

1S

Fig. 3.6. The Landau expansion of the Helmholtz free energy density at the transi-
tion into the ferroelectric phase (7%) as well as for temperatures above and below 7.

T<T,

0
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dependent interaction forces favour a parallel arrangement of the rod-like
molecules in a nematogen material and, thus, create a molecular field which
can maintain itself. The spontaneous self-organisation begins at the transition
from the isotropic liquid into the nematic phase. The order parameter here is
the variable S5 which characterises the degree of orientation.

The fourth example is of a completely different nature and deals with
the phase behaviour of binary fluid polymer mixtures. [f the composition of
the mixture is suitably chosen, a transition from the mixed homogeneous state
into a two-phase structure occurs in a continuous fashion. The difference in the
composition of the two phases which form on crossing a critical temperature is
initially infinitely small and then gradually grows. It is this difference which
assumes, in this case, the role of the order parameter. Order is generated
through the separation of the homogenous mixture into two different phases.

By means of these examples, we will recognise the common features in
second-order phase transitions, or as is also said critical phase transitions;
the changes in properties near the transition temperature occur in a char-
acteristic manner. Second-order phase transitions are theoretically very well
understood. A large proportion of observations can be described using a simple
thermodynamic theory which was developed by Landau. It will be described
and correspondingly applied.

3.1 The Ferroelectric State

Equation (2.119), which was obtained in the derivation of the Clausius-
Mosotti equation, shows immediately that a polarisation of matter can sta-
bilise itself and gives the criterion for this. The dielectric susceptibility diverges

for 5
P

1= 360 (3.1)
A divergence means that the external field which must be applied in order to
generate a definite polarisation becomes ever smaller and finally disappears.
The basis of this phenomenon is the Lorentz field which is in the same direc-
tion as the external field and always amplifies it. For the condition described
by Eq. (3.1), it is exactly strong enough for a self-stabilisation. This follows
immediately from the equation

. P
P = pBEy = pfiz— . (3.2)
€0
The condition for the transition into the ferroelectric state is thus solely a suf-
ficiently high polarisability or atom density in the solid.
3.1.1 Transition Scenarios

Figure 3.1 shows as an example the structural changes which arise for
BaTiO3 — a crystal with the perovskite structure — upon the transition into
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LA N

1.0
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" 3.13. PCHT: The increase in intensity of depolarised scattered light upon
pproaching the temperature Th; of the transition into the nematic phase.

3.3.1 The Landau-de Gennes Expansion

What would be the form of a Landau expansion which describes the isotropic-
nematic phase transition in a qualitatively correct fashion? The answer to
this question was given by de Gennes. In order to describe the Helmholtz
free energy density as a function of the nematic order parameter and the
temperature

£(82,T)

the following power series expansion is to be used
F— fo=0b(T —T")S% — 355 + caSy - (3.40)

A difference as compared to the power series expansions for ferroelectrics
and ferromagnetics is the inclusion of a third-order term, which appears be-
cause the symmetry has changed. While previously a sign reversal of the
order parameter left the Helmholtz free energy unchanged, there is a change
for a nematic liquid crystal. This becomes immediately clear upon consider-
ing an example. Sy = —1/2 corresponds to an orientation distribution, where
all molecules have their long axes perpendicular to the director, with their
orientations being uniformly distributed in this plane. By comparison, the
structure is completely different for an order parameter So = +1/2: Here,
there is a wide distribution with a maximum in the director direction. Under
these conditions, it is clear that a third-order term must be included in the
Landau expansion for the Helmholtz frec energy.

e e~
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The consequences are shown in Fig. 3.14, which shows the dependence
of the Helmholtz free energy on S, for three temperatures. The middle curve
corresponds to the transition temperature, where the isotropic liquid and a ne-
matic phase with a well-defined order parameter co-exist. At higher and lower
temperatures, there is of course only the isotropic state and only the nematic
state, respectively.

The Landau expansion in Eq. (3.40) can be evaluated to determine the

position of the transition point. The following applies for the equilibrium
value of Sy:
df

ds,
The co-existence condition is given by

0=2b(T —T*)Sy — 3c352 + 4cyS3 . (3.41)

J(S2=0)~ fo=f(S2 = S2(Tw)) -~ fo=0 , (3.42)
which means that
0=b(T = T")S5(Twi)? = 32(Ts)® + 4o (Tui)* . (3.43)

Combining Egs. (3.43) and (3.41) leads immediately to an expression for the
order parameter at the phase transition:

C3

So(Ty) = — . 3.44
2(Thi) e, (3.44)
7
/
/ |
/ |
/ I
/ I
; T>Tm/ l'
N / '
_ |
< T=T. /
- ni K
N ;
‘\T<Tm /
<
0
82

Fig. 3.14. The Landau~de Gennes expansion for the Helmholtz free energy density
of a nematic liquid crystal at the clearing point Ty; as well as for temperatures where .
only the isotropic (7' > Ty;) or only the nematic phase (T < Tyi) exists.
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The situation at the temperature T* is given by

2
C
Tni_T*_—S’*

= (3.45)

Finally, it follows that the temperature dependence of the order parameter in
the nematic phase is described by

5 1/2
Sy = 3c3 + ((%‘3) - z_b(T - T*)) . (3.46)

h 804 464 4:04

As a thermodynamic theory, the Landau approach works with phenomenologi-
cal coefficients. If experimental data exist, these can be determined by a fitting
procedure. Further experimental results, for example, the dependence6f Sy
on T, can then be predicted.

3.3.2 The Maier—Saupe Theory

A specific theory allows the order parameter at the trghsition temperature
to be calculated. It was developed by Maier and Saupé in 1958 and is briefly
degcribed here. The theory deals directly with the self-stabilisation in the
nematic phase. The starting point is the following €xpression for the molecular
field which acts to orientate the rod-like molegdles:
w(®) = —1p 9y 2P 219 E (3.47)

u(¥) is the ‘newpatic potential’ appgdring in this phase, which each molecule
experiences upol a rotation. Thé angle ¥ = 0 corresponds to the director
direction. The chosen form of #he potential ensures that the positions 9 and
180°-1 are equivalen, as is #equired. The decisive step is the inclusion of the
order parameter So in\eI¥ description of the strength of the molecular field.
The chosen form mear\that it becomes ever more difficult for a molecule
to deviate from theAlirectyyr direction, the higher the order parameter in the
nematic phase ig/"In addittyn, the expression contains a variable which is
material depepdient, namely the coefficient ug.

The orieftation distributionNunction w(d, ¢) of the molecules can be cal-
culated, fér a given potential u(¥®), using Boltzmann statistics. It is given
as

) (3.48)

We introduce a new variable,
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290 5 Microscopic Dynamics

5.2 Liquids: Diffusive Motion

Propagating wave-like excitations are also found in liquids in the form of
sound waves. In contrast to the case of crystals, it is not to be expected that
these waves will continue to exist into the meso- and microscopic region. On
these length-scales, liquids lose their macroscopic homogeneous structure. For
decreasing wavelengths, this leads, first of all, to an increasing scattering,
with an associated reduction in the lifetime of the sound waves, and finally
to their complete disappearance. As was mentioned in the introduction to
this chapter, only local vibrations of individual molecules in the environment
of their neighbours appear in liquids on the microscopic scale, and these are
only short-lived because of the constant changes. A qualitatively new type of
dynamics is encountered here, namely the diffusion of molecules. This makes
the long-range transport of material possible, something which is not the
case for crystals. How this can be described will be discussed in the follow-
ing.

5.2.1 Diffusion Coefficients

The trajectories followed by individual molecules in a liquid or by colloids
in solution are subject to statistical laws. As is always the case for processes
which do not occur in a deterministic fashion, but rather where there is a large
number of different possibilities by which the process may advance, it is nec-
essary to introduce a suitable distribution function in order to describe the
time-dependent development. This is, for the case of diffusive motion of indi-
vidual particles, the time-dependent auto-correlation function gy (r,t).
It is defined such that
&1 (7‘, t) dgr

describes the probability that a particle moves within a time # from its start-
ing point into a volume element d®r which is r away. g is a probability
distribution and, therefore, must be normalised:

/gl(r,t)d3r =1. (5.140)

Einstein presented a differential equation by which g, (r,t)) can be calcu-
lated. The starting point is equation

gi(r,t+ At) = /g]_ (r =7 t)g (', A)d3r . (5.141)
The displacement over a distance r within a time .t + At is broken up
into two steps which follow one another. The first step, which is com-
pleted during a time ¢, achieves a displacement of r — r/ ., while a second
step, in the remaining time A¢, brings the molecule to the point r. The
special feature of this integral notation is that the probability that these
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two steps follow each other is given by the product of the associated in-
dividual probabilities, with an integration over all possible step combina-
tions being then performed. This product notation expresses exactly the
basic property of all diffusive motions, namely that they occur in steps,
between which there is no correlation at all. The total probability can
only be written as the product of the individual probabilities if this is the
case.

The integral equation, Eq. (5.141), can be transformed into a differential
equation. Carrying out a series expansion with respect to time on the left-
hand side and with respect to the position on the right-hand side leads to the
following equation

981 _ 981
ir )+ 4% = [ o —Zma—mw

3 ’
T3 Z Ti aa arJ (r, t)}gl(r At)d*r’. (5.142)

Upon performing the integration on the right-hand side, it is found that several
terms disappear, since from symmetry reasons

/ g (r', Atyrld®r’ = 0 (5.143)

and also
/gl(r At)yrir 77Mde’r/“O . (5.144)

g:(r,t) appears on both sides and can thus be removed. The only term which
remains on the right-hand side is

/gl(r’,At)r’?d3r” = %/gl(r’,Atﬂr’FdSr’ (5.145)
such that we obtain
og, 1/
A =V (rt) 2 / g, (', AR 2P (5.146)

This equation only contains a single parameter, namely the quantity

72
D, = 6; / gy (r', At)|r 2Py = <’6’" A{t> , (5.147)

which is termed the ‘self-diffusion coefficient’. Using Dy, we arrive at a differ-
ential equation for the auto-correlation function g, (r, ¢):

;(T,t) = D;VZg(r,t) . (5.148)
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Boltzmann distribution. For an energy difference Aligg ~ 2 — 3 kJmol™?!, the

population probability for the two local gauche minima at room temperature

is given by .

_ 2exp(=Ady/RT)
1+ 2exp(—Adg/RT)

We 0.5 (1.71)
(R is the universal gas constant). This equation assumes that each C-C bond
can arrange itself independent of the others. Although this is not really true,
Eq. (1.71) does provide a reasonable estimate for w,.

In the liquid state, i.e., in a polyethylene melt or the melt of some other
polymer, all the different rotational isomeric states can be occupied. Virtually
all the chains exist in forms which can be referred to as coil-like. As they
are densely packed they must interpenetrate each other. A polymer melt thus
represents a dense packing of entangled coiled chains.

1.4.2 Polymer Melts

In a polymer melt, the chains take up all possible conformations in a sta-
tistical distribution. The exact description of this distribution seems at first
a very difficult problem. It could be thought that it is necessary, for each poly-
mer, to consider its particular chemical structure, which then determines the
distribution over the rotational isomeric states for the bonds comprising the
polymer backbone. All details such as the position of the local minima as well
as bond lengths and bond angles which are important for structural properties

would then have to be considered. This would mean that each polymer would

amount to a new problem to be solved. The situation is actually much simpler.
For many polymer properties, the behaviour in the A range is not important;
it is the structure and dynamics over length-scales greater than 10nm which
are decisive. As is easily appreciated, differences between different polymer
chains disappear over such mesoscopic length scales. Figure 1.26 shows how
a typical polymer coil would then appear: All details of the chemical structure
have disappeared and only a worm-like object is observed.

The question arises as to the extent to which a polymer molecule extends
itself in a melt, i.e., we ask what is the diameter of the sphere which is just
big-enough to encompass a coiled polymer molecule? The latter corresponds,
for a large number of polymer conformations, to the case where both chain
ends, i.e., the two most distant structural building blocks along the chain, lay
within the sphere. The average distance between the chain ends can be esti-
mated by calculating the square root of the mean squared chain-end distance
(R?). The distance vector between the chain ends, R, is shown in Fig. 1.26.
In order to calculate <R2>j we break the chain up into Ny segments, which
have, as shown, end-to-end distance vectors a1, as, .. ., an,. The vectors a; of
different segments are completely uncorrelated in their orientation provided
that the chain segments are sufficiently long. It is this property which allows
(R?) as well as the distribution function of the vector R to be determined.

i
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Fig. 1.26. A polymer molecule at low resolution and an associated model chain
made up of freely jointed segments.

The problem is equivalent to that of the motion of a Brownian colloidal parti-
cle in a liquid. The motion of a Brownian particle away from its starting point
takes place by means of a large number of uncorrelated single steps, hence, in
the same way as the end-to-end distance vector of a polymer chain is set-up.
Representing R as the sum of uncorrelated steps a;,

Ne
R=)Y a; , (1.72)

i=1

the probability distribution for the motion of a Brownian particle away from .

its statting point can be directly used for the polymer chain. As will be ex-
plained in Sect. 5.2 (Egs. (5.157) and (5.158)), the Brownian motion is de-
scribed by a Gaussian distribution function. The probability

w(R)*R

that the second end of a polymer chain finds itself in a volume element d® R at
& distance R from the first end is, thus, also given by a Gaussian distribution,

of the form
3 \*? 3R?

The pre-factor comes from the normalisation condition
/ w(RYPR=1 . (1.74)

The only free parameter in the expression for the distribution is (R?), which

is defined as
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() =

w(R)R*4nR*dR . (1.75)

\8

Il
o

Considering the breaking up of the chain into segments as described by
Eq. (1.72), it follows that

(R?) = <| i aj|2> = < i a;- aj,> . (1.76)

=1 3’ =1

The absence of any correlation in the orientation of the different segments
means that :

(@j-aj)=(la; ) é; (L.77)
giving the result
(R*) = Ny{|a; |*) . (1.78)

It was stated above that the square root of <R2> can serve as a measure of the
extension of a polymer molecule in the melt, and we choose for this quantity

the symbol Ry:
1/2

Ry = (R?) (1.79)
The number of segments N is proportional to the degree of polymerisation N.
We therefore obtain for the size of a polymer chain in a melt the characteristic
power law
R() o Nl/2

Upon introducing the constant of proportionality ag, we write
Ro = QQNl/Q . (180)

ag corresponds to an effective length per structural unit and depends on all the
microscopic properties of the chain, such as the bond lengths, bond angles, and
the stiffness of the chain — the last property is determined by the occupation
probabilities of the rotational isomeric states of the main-chain bonds.

Our attention above was on the distribution function for the chain end
distance. It is clear that the distance distribution for any two points in the
chain is also Gaussian-like provided that the points are far enough apart and
are thus separated by many individual segments a;; this is true for all length-
scales for which the chemical structure is no longer of importance. This has
an important consequence, namely, that no change in the general appearance
is seen when observing the interior parts of a chain at different resolutions.
The structures always look the same, i.e., they always have the appearance of
a Gaussian coil and hence, are similar to each other. Polymer chains in a melt
are self-similar objects.

For self-similar objects, the question about their fractal dimension comes
up. The answer is found in the power law of Eq. (1.80). If applied to a volume
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which encloses only a part of the polymer chain — say, a sphere of diameter r —
we obtain for the number of structural units n which are found on average

nocr? . (1.81)

The power to which the distance is raised corresponds, by definition, to the
fractal dimension. Thus, for polymer chains in a melt, the fractal dimen-
sion takes the value two. Polymer chains are objects which exist in three
dimensions; however, since they only partially fill the available space, a lower
dimension is found.

The self-similarity property of the objects applies only over a limited range:
The upper limit is set by the size of the whole molecule, i.e., Ry, while the
lower limit is reached for microscopic regions where the chemical structure
becomes visible.

1.4.3 Solid Polymers

Upon cooling to sufficiently low temperatures, it is found, als6 for polymer
systems, that the melt solidifies. There are two completely dflferent processes
ciently regular in

polymer chains. The polymer chdins are fully stretched out and transferred
lowest gbnformational energy which is always periodic
in structure. A three-cmer
such chains are packed dgether parallelly in a regular side-by-side fashion.
Such a crystal is charg ¢teNged by a marked internal anisotropy with strong
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