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Consider now the dynamic-mechanical experiment. The relaxation equa-
tion can also be applied in this case. Replacing the time-independent stress
0
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02z (t) = 00 exp(—iwt) (2.77)

gives
dAy
dt
A solution with a periodically changing extension Av(t) is required, and we
therefore write

_%[m(t) — AT, exp(—iwt)] - (2.78)

Ay(t) = 0% AT (w) +1AJ" (w)] exp(—iwt) (2.79)

This leads to the following expression for the complex compliance AJ(w):

AJ(0)

AJ’(W) +iAJ" (w) = 1—-_—10; (280)
AJ AT wr
= ————1 i 1——1 Tl " (2.81)

Figure 2.16 shows the frequency dependence of AJ'(w) and AJ"(w). The
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Fig. 2.16. The real and imaginary parts of the dynamic shear compliance for a sim-
ple relaxation process.
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) 2 Moduli, Viscosities and Susceptibilities

which cover many orders of magnitude. Such experiments yield-the frequency
dependence of the real and imaginary parts of the complexcompliance, D (w)
and DY (w), respectively. The phase shift, &, is given b

(2.50)

As an alternative to the dynamic tengile compliance, the dynamic Young’s
modulus cah.also be used to describe the experimental results. It is defined

- Bj(w) ~ iE/() (2.51)

(2.52)

By convention ive sign i en for the imaginary part.

discussed reactions to tensile
expressions for a shear, ie.,
dependent shear modulus
d in general complex

stresse§. There are, of course, correspon
ifne-dependent shear compliance J (t), a tI
(t) and the two corresponding frequency-dependen
functions J(w) and G(w).

Dynamic-mechanical experiments have the advantage, as compared to
time-dependent experiments, that they provide a particular physical insight.
During the deformation, work is done on the sample by the external force.
On the one hand, this increases the potential energy, on the other hand, it
leads to the generation of heat. The real and imaginary parts of the dynamic
compliance correspond exactly to this separation. That this is so can be eas-
ily demonstrated. It is only necessary to analyse the power provided by the
external force. Taken per unit volume the power is given by

dR(ez(1))
dt
(for the calculation of a product a transition from the complex notation to

the actual physical quantity given by the real part is necessary). The time-
dependent extension is given by

dw

€55 (t) = Di(w)o?, exp(—iwt) = (D¢ + iD!")02, [cos(wt) — isin{wt)] . (2.54)
The real part is then given by

R(e2(t)) = Diol, cos(wt) + D!o?, sin(wt) - (2.55)
Therefore, the following expression is obtained for the power

dw

5= 00, cos(wt)[~way, Dy sin(wt) + wal, DY cos(wt)] (2.56)
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2.1 Mechanical Fields

or, upon applying a well-known trigonometric relation

0 42

Eld% = —(i”?iwDé sin(2wt) + (02,)2wD} cos®(wt) . (2.57)
It is apparent that there are two contributions to the power. The first term
oscillates between positive and negative values with double the frequency of
the stress. This expresses an exchange: Work, which is stored up in the sample
during & quarter period, goes back out in the next quarter period. This part
clearly describes the storing and release of elastic potential energy. Its magni-
tude is given only by the real part of the dynamic compliance. The second part,
which is proportional to the imaginary part, behaves completely differently.
It describes a take up of power which is always positive, with a time-averaged
magnitude

dw 1
5 = 50 wDy - (2.58)

What does this mean? Generally, the internal energy of the sample I changes
as work is done and heat is exchanged according to

AU = Vdw+dQ . (2.59)

If the experiment is, as usual, performed under isothermal conditions, there
is no change in the internal energy of the sample. The supplied work must

therefore be completely released as heat:
dw  dO
Ereeints ol (2.60)

Relationships Between the Response Functions. With the time-
ompliance Dy(t), the time-dependent Young’s modulus Ey (t), the
ent dynamic compliance Di(w), the dynamic Young's mod-
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independent of the type of
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question arises as te"Whether it is possible to treat the general case 0Fa

pletely arbitrefy time dependence. In fact, this is possible, the condition bel
solely the’knowledge of a further response function of particular importance:
aist be known how a sample reacts upon applying a force as a short pulse

£(5) = &3(0) - (2.61)
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Fig. 2.26. Systemqf spins in a static magfietic field Bo. Precession with the Larmor
frequency (left) and ¥esulting longitudinal magnetisation (centre). Rotation of the
spin system by a transverse magneti€ field By oscillating with the Larmor frequency.
Precession in the rotatind\coordifiate system z',y’ (right).

zy plane. If the frequency of the irradiated field is chosen to agree with the
precession frequeficy of the spins, the irradiated field is able to cause the spins
to rotate. Thi€ can be understood b counsidering a coordinate system which
rotates at_the Larmor frequency — this s denoted by 2’ and ¢ in the drawing
on the pfght-hand side. In this rotating fraig, the field with an amplitude B,
is agadn responsible for a precessional motion,this time about the direction of
the varying field. The change in the angle due tothis precessional motion in

e rotating coordinate frame is denoted by fp and prows proportionally with
time. The pulse duration can be chosen to ensure that ¥ equals exactly 90°
such that a purely transverse initial state is generated, whege free induction
decay can subsequently be detected.

2.4 General Properties of Susceptibilities

The subject of this chapter has been the effects which external fields can cause
in matter. It has been seen that linear dependences are observed over a wide
range of conditions: Deformations are proportional to the applied tensile or
shear stress, polarisations are proportional to the electric field which is acting,
while magnetisations are proportional to the magnetic field which exists. We
are always dealing with linear responses which can be quantitatively described
by means of response functions such as the compliance and susceptibility. For
these response functions, there exists a series of generally applicable laws, some
of which have already been introduced at the end of Sect. 2.1.3. Equations
were derived which link different response functions together. The relationship
between the creep compliance a.(t) and the time-dependent modulus a(t) is
given by the integro-differential equation
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t

1=fd(§°( )a(t')dt’

0

(Egs. (2.66) and (2.68)), while the relation between the pulse response function
ap(t) and the dynamic compliance or mechanical susceptibility a(w) is
expressed by (Eq. (2.73)):

oo
a(w) = o (W) — ia" (w) = f oy (t") exp(iwt”)dt” .
0

An important result was that the real and imaginary parts of a(w) have a well-
defined physical meaning. The real part expresses for a periodic load the part
of the external power which is reversibly introduced and removed again, while
the imaginary part describes the loss, i.e., the part of the power which is
dissipated and lost as heat. The proof of this was given for the dynamic-
mechanical experiment; the statement, though, is, as already mentioned, valid
for all discussed susceptibilities. In the mechanical case, the work per unit

volume is given by
dw = o,.de,. . (2.205)

In the dielectric case, the following is valid
dw= EdP (2.206)
while we have the following for the application of a magnetic field:
dw = poHdM . (2.207)

For variables which are related to each other by means of a susceptibility,
one is dealing with a pair of energy-conjugated variables (see Eq. (A.4) in
Appendix A). Therefore, it is always true that the imaginary part describes
the energy dissipation, i.e., the transfer of work or field energy into disordered
thermal motion.

A further one will now be added to these previously stated general laws.
It may sound amazing at first but the real and imaginary parts of a suscep-
tibility are actually not independent, but rather they are coupled with each
other. This may be surprising since both, as described above, have completely
different meanings. The relationship is expressed by means of the Kramers—
Kronig relations.

The Kramers—Kronig Relations. In order to describe the relations, funda-
mental laws from the mathematical theory of complex functions, in particular
the theorem of residues, are used. Consider as a starting point Eq. (2.73):
It gives the frequency dependence of the susceptibility on the basis of pulse
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122 9 Moduli, Viscosities and Susceptibilities

z value in place of a real frequency. The singularity for a simple relaxation
process gives

4
X (t) x exp(—izt) = exp = (2.214)

while the following results for a damped harmonic oscillator

1 7 12 T
X(f) X exp +i (ﬁ = m) t— ~2'-:r"—2‘t ‘ (2215)

These are, however, exactly the time dependences of the eigenmodes of the sys-
tems which become visible during the subsequent decay process after switching
off an external force. The singularities in o(z) occur at the positions of the
system eigenmodes. It is also understandable, for it is exactly the eigenmodes
which can exist without excitation by an external force. An infinitely large
susceptibility expresses this. Why can no singularity appear in the lower half
of the complex plane? The answer is that the associated modes would be de-
scribed by processes with an exponentially increasing amplitude, and these
cannot exist for stable linear systems.

In order to derive the Kramers-Kronig relation, consider now not a(z) but

rather the function

olz), (2.216)
Z— Wy

It is also analytic in the whole upper half of the plane including the w' axis
with one exception: There is a singularity at the location z = wp on the ' axis.
Consider the calculation of a special integral over a closed path, namely that
shown in Fig. 2.27. According to a basic theorem valid for complex functions
the integral must vanish since no singularity is included. The integral can be
expressed as a sum of four pieces, namely two straight lines and two semi-

circles:

(Du

Fig. 2.27. The integration route in the plane of the complex frequency z= W' +iw”,
as selected in the derivation of the Kramers—Kronig relations.
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wp— 8 27
0= / -ﬂdz + ja(wo + Jexpit)idd (2.217)
Z— Wo
o=} ks
a(z) . 5 5%
A 4z + lim [ alwe + Aexpid)idy . (2.218)
Z —wp A— oo
wg + é

The large semicircle with radius A should run into infinity. The first term runs
from infinity to a distance § from the singularity at wo, the second term corre-
sponds to going round the singularity via the small semi-circle with radius 4,
the third term goes from there to infinity, while the fourth term gives the
contribution of the large semi-circle with the radius A — oo. The following
was used for the small circle:

z =wo + dexpid , (2.219)
where 9 is a variable angle. It, thus, follows that
dz = if expivdd (2.220)
and therefore

dz

=idd - )
p— i (2.221)

This expression is equally valid for the large semi-circle and was used in the
second and fourth terms. The theorem of residues can now be applied to
determine the value of the integral which goes round the singularity wo:

2m
%irr{l)]a(wo + fexpiv)idd = —iralwy) . (2.222)
m

The fourth term makes no contribution since the susceptibility disappears at
infinity in the lower half of the space. The following is thus obtained

wog— 8 [ore]
d: d
= —ina(we) + lim f gl + / o(z)dz , (2.223)
§—0 Z — Wp Z—wy
—0oQ wo +6

The expression in square brackets, which formulates a coupled simultaneous
approach from both sides to the singularity, is referred to as the ‘principal
value’; it can be written in the following short-hand form:

o0 wog—96 o0
P /" @) 4 _ m / B f @) g, . (2229)
W — wp §—0 W — wo W= wWo
o —00 wo+ 4
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In this way, the result has already been obtained. The breaking up of the
susceptibility into real and imaginary parts and the comparison to the real
and imaginary parts in Eq. (2.223) leads to the two equations

koS 1"

a'(wg):-:;P f 3_(‘:) dw (2.225)
1. T o

o/ (wo) = = =P / 55“20dw . (2.226)

These equations link the real and imaginary parts of the susceptibility in
a one-to-one way and are referred to as the Kramers—Kronig relations.

A consideration of the susceptibilities which are measured in dynamic-
mechanical experiments on viscoelastic materials such as polymers reveals
thatl the Kramers—Kronig relations in the above form require the addition of
a small shpplementary term. The contribution of the phastic componentywhich
is glways found for polymers, hasn’t yet been included. The eige mode of
a plastic bodNis at z = 0. Thigcan be recognised from the fact that the above-
stated singularity associ tha simple’ieiaxation processgapproachesz = 0
for|T — o0, i.c., ubon the traysition i 0 a plastic body. \Klternately, it can be
seen by solving the dquation of motion for a plastic p6d

£(tN\= Eolxp(—iwt) (2.228)
X (ty= Xqexp(—iwt) (2.229)
leads to the following expresgion for the\susceptibility: a(w)
Xo i
— =ow) x , 2.230
2 =) o 3 (2:230)
and the ¢orresponding expression for a(z)
a(z) o« i : (2.231)

Such a sidgularity at the origin was not taken into accoynt in the above
caleulation of the integral. A later consideration of such procegses is possible.
As is implied in Eq. (2.230), plastic bodies only make a contribution to the
imaginary part of the susceptibility,

Av
a”(w) = ? 4 (2232)
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| 1 Structures

is liquid-like; they can, thus onsidered as two-dimensional liquids.
The namie-is also of Greek origifi, coming from o pnypue, which means soap —
Friedel found £ “when mixed with water, also forms such a layer-like
structure. are more viscous than nematic phases because of
theiz-different nature. In con to the case of nematogens, no significant
echnical use has been found so far fo stances in the smectic phase.

1.3.2 Orientational Order and Optical Aniso

As is illustrated in the earlier sketch of the nematic liquid-crystal, there is not
: a strict parallel arrangement of all molecules, but rather a collective preferred
orientation. The distribution of orientations covers the whole range of possible
angles. The width of the distribution determines the optical anisotropy, and
it is, therefore, important to define a parameter which describes in a suitable
way the degree of orientation of a nematic phase.
In order to describe the distribution of the orientation of the molecular
axes, we introduce, in the framework of the spherical coordinates with 4 =0
corresponding to the direction of the director, a function w(¥, ), where

w(V, @) sin 9dddep

| gives the fraction of molecules whose long axis lies within the range of angles
l ddde. In the case here of uniaxial symmetry, w does not depend on ¢, and
we write, upon introduction of a second distribution function w' which is only

i dependent on ¢ /9)
. w
wd, o) =— = - (141)

\ The following normalisation equation applies

|

i T 2w T

| L= j /w(ﬁ) sin 9ddde = /w'(ﬂ) sind9dd . (1.42)
I9=0¢=0 9=0

It is a fundamental property of a nematic phase that
w (9) =w'(m—9) . (1.43)

Even in the case that a molecule possesses an electric dipole moment, the
nematic phase is always non-polar. This also means that the director n is not
uniquely fixed - it can always be chosen as well in the opposite direction,

Orientation distribution functions w'(¥) can be expanded as a series of
Legendre polynomials Pj(cos?):

W () = f: %(21 +1)S,Pi(cosd) . (1.44)
t=B
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These polynomials are orthogonal to each other — this is expressed mathemat-
ically by

/ B P sinddd =
9=0
The series coefficients S can be calculated according to:

2

S . $
A1 * (43}

Syp= f Pi(cos®)w' () sinddd = (P) . (1.46)
d=0

Regardless of the form of w', it is always true that
So=1. (1.47)

In the given case of a non-polar system, the first-order series coefficient is
ZET0:

{cos?) =0 . (1.48)

The first non-zero contribution after the constant Sy term is thus the second-
order term, whose coefficient is given by

29 _
Sy = <§952i——1> . (1.49)

S, characterises the degree of orientation and is suited to take the role of the
nematic order parameter. There are two limiting cases for Sp:

o for an isotropic distribution, Sz = 0
e for a perfect orientation, S; = 1.

There is a further reason for the choice of Sz as the order parameter: The

ifference in the refractive indexes, An = ny —n,, which is re ible for
birefts oof of this and
introduce the coordinates z,y
and z, has its is aligned parallel to the diregt6r, while the second, with
the coordinates ', ecule. The 2’ axis corresponds

(1.50)

mmetry. 8’ can be trans-

formed into gHe director-fixed axes system:

B=a"t.p5-02. (1.51)
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Fie,~3.13. PCHT: The increase in intensity of depolarised seattered light upon

3.3.1 The Landau-de Gennes Expansion

What would be the form of a Landau expansion which describes the isotropic-
nematic phase transition in a qualitatively correct fashion? The answer to
this question was given by de Gennes. In order to describe the Helmholtz
free energy density as a function of the nematic order parameter and the
temperature

f(52,T)

the following power series expansion is to be used
f— fo=b(T —T*)S% — c353 + sS85 - (3.40)

A difference as compared to the power series expansions for ferroelectrics
and ferromagnetics is the inclusion of a third-order term, which appears be-
cause the symmetry has changed. While previously a sign reversal of the
order parameter left the Helmholtz free energy unchanged, there is a change
for a nematic liquid crystal. This becomes immediately clear upon consider-
ing an example. Sp = —1/2 corresponds to an orientation distribution, where
all molecules have their long axes perpendicular to the director, with their
orientations being uniformly distributed in this plane. By comparison, the
structure is completely different for an order parameter Sy = +1/2: Here,
there is a wide distribution with a maximum in the director direction. Under
these conditions, it is clear that a third-order term must be included in the
Landau expansion for the Helmholtz free energy.
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3.3 The Nematic Liquid-Crystalline State 145

The consequences are shown in Fig. 3.14, which shows the dependence
of the Helmholtz free energy on Sz for three temperatures. The middle curve
corresponds to the transition temperature, where the isotropic liquid and a ne-
matic phase with a well-defined order parameter co-exist. At higher and lower
temperatures, there is of course only the isotropic state and only the nematic
state, respectively.

The Landau expansion in Eq. (3.40) can be evaluated to determine the
position of the transition point. The following applies for the equilibrium
value of S5:

d
% =0 =2b(T — T*)S2 — 3¢353 + 4453 . (3.41)
2
The co-existence condition is given by
f(S2=0)— fo=f(S2=5(Tw)) - fo=0 , (3.42)

which means that
0= b(T — T*)Sz(Tni)g = CgSg(Tni)a + €455 (Tni)4 . (3.43)
Combining Eqs. (3.43) and (3.41) leads immediately to an expression for the
order parameter at the phase transition:
C3

Sg(Tni) = '274 - (344)

Fig. 3.14. The Landau—de Gennes expansion for the Helmholtz free energy density
of a nematic liquid crystal at the clearing point Ty; as well as for temperatures where
only the isotropic (T > Th;) or only the nematic phase (T < Ty;) exists.
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146 3 Molecular Fields and Critical Phase Transitions

The situation at the temperature T is given by

2
._ G
Tni = = . '4
T T (3.45)

Finally, it follows that the temperature dependence of the order parameter in
the nematic phase is described by

3 3es\2 2 i
82 _ C3 o (( CS) _ ——(T o T*)) ) (346)
8cy

dey 4cy

As a thermodynamic theory, the Landau approach works with phenomenologi-
cal coefficients. If experimental data exist, these can be determined by a fitting
procedure. Further experimental results, for example, the dependence of Sz

[Wcan then be predicted.
Py

3.3.2 The Maier—Saupe Theory

A specific theory allows the order parameter at the transition temperature
to be calculated. Tt was developed by Maier and Saupe in 1958 and is briefly
described here. The theory deals directly with the self-stabilisation in the
nematic phase. The starting point is the following expression for the molecular
field which acts to orientate the rod-like molecules:

3cos?d -1

u(®) = —uoSy

(3.47)
u(d) is the ‘nematic potential appearing in this phase, which each molecule
experiences upon a rotation. The angle ¢ = 0 corresponds to the director
direction. The chosen form of the potential ensures that the positions 4 and
180°-99 are equivalent, as is required. The decisive step is the inclusion of the
order parameter S in the description of the strength of the molecular field.
The chosen form means that it becomes ever more difficult for a molecule
to deviate from the director direction, the higher the order parameter in the
nematic phase is. In addition, the expression contains a variable which is
material dependent, namely the coefficient uo.

The orientation distribution function w(®, ¢) of the molecules can be cal-
culated, for a given potential u(1¥), using Boltzmann statistics. It is given
as

oSy Jcos®d — 1)

1
w%@=§m{@T 5 (3.48)

or

1 3upS
w(d, ) = 27 OXP (?k.[;_; cos? 15‘) ’(3‘49)

We introduce a new variable,
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= 32“::3 , (3.50)
and determine the partition function 2’ using
r o
Zi f f exp(z cos® 9) - sinddddy = 1 . (3.51)
Z'(z) can be expressed as a function of z:
™ 1
i) = O f exp(x cos? 9)d(— cos ) = 47rfexp(3;y2)dy ; (8:62)
9=0 0

If the orientation distribution function is known, the order parameter follows
generally as:

T 27
3cos?d —1
Sp = / f w(ﬂ,zp)%smﬂdﬁdp. (3.53)
Fd=0p=0 "

The equation expresses here a self-consistency condition: Sy is not only the
result on the left-hand side, but it is also contained in the distribution function
w on the right. The equation can be solved — i.e., self-consistency is achieved —
and gives the value of the order parameter. Equation (3.53) is re-expressed
as

ks
=—-f fw(ﬁ @)dg sin ¥dd (3.59)
I=0¢=
3 ] T 27
+§-§ f [ exp(x cos? 9) cos? ¥ sin 9ddde
Y9=0¢=0
1
__1+§_f (z32)y%d 3.55
=-5tg5g [ Py )ydy . (3.55)
0
This leads to
8l o B LS 3,56
T 722z dr (3.56)

Denoting the right-hand side of Eq. (3.56) as @(x) and expressing S5 as a func-

tion of z yields
2kpT

x=&(x) . (3.57)
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We find here functions of the variable z on both sides of the equation.
Figure 3.15 shows the dependence of both functions and points to the solu-
tion: It is necessary to make the left-hand side of the equation intersect with
&(z). For high temperatures, i.e., the gradient of the line is large, the only
intersection point is at the origin of the co-ordinate system. This changes at
the temperature T, where there is a second solution: It is associated with
a definite value of the order parameter, namely Sz = 0.44. This actually agrees
well with experimental observations. The Maier-Saupe theory also gives the
temperature dependence of the order parameter in the nematic phase. The
figure contains a straight line which corresponds to this case — it can be shown
that the highest intersection point corresponds to the equilibrium value.

Fig. 3.15. The graphical solution of the self-consistent Eq. (3.57) for Sa.

3.4 Phase Separation in Binary Polymer Melts

The hiscussion of the properties of polymer materials up to now only
ingle component systems. In fact, a e part of, in particu-
lar, application-oriented research is devoted ixtures or blends of different
polymers. The bagis for this is the ob: ation that mixtures often have bet-
ter mechanical propegties than t
to reduce the brittlenes erials and hence increase their fracture resis-
tance. In order to optimi e properties of polymer blends, a good basic
understanding of the mixing belayiour is important. It would be desirable to

know

Ad

fo

ar
ne
is
pl
Jis

o!

11
St



i1 to the normal

(4.268)

applied magnetic
d strength H..
stic field is given

(4.269)
1etic (B = poH),

(4.270)

(4.é71)

strength, i.e., we

(4.272)

(4.273)

tions (Fig. 4.26,
xpression poH? /2
bbs free energy is
ormal conducting

slying a magnetic

corresponding to
at in Fig. 4.34 is
« first critical field
rmally conducting
n is then observed.
he value of zero is
conductors. Fig-
uperconductors.
mgth in the inter-
, which consists of
jucting tubes. The
»nal lattice.

4.4 Superconductivity 235

600
- “A
5wl
3 A\
L / \
200 AC °
Fo a e
- T 4
D™ ""‘.:}‘_'_{-—.._.
! 1 1 1% 1 I 1 T o gt Li | < |
400 800 1200 1600 2000 2400! 2800 3200 3600
HI[G]

Fig. 4.34. Magnetisation curves for lead (A) and different lead-indium (2.8-20.4%)
alloys (B, C, D). The alloys are type 1I superconductors (from Livingston in [23]).

Fig. 4.35. Type II superconductors with regularly arranged normal conducting
tubes, which were made visible on the surface of a sample with a cylinder form with
the help of ferromagnetic particles (from Trauble and Essmann [23]).
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The charge carriers in a superconductor, the Cooper pairs, behave like bosons,
which means that they, like photons, are able to occupy, in large numbers, an
individual quantum-mechanical state. Ginzburg and Landau had suggested
already in 1950, before the postulation of the possible existence of Cooper
pairs, that the stationary states, which are occupied by charge carriers in
a superconductor, can be described by a complex wavefunction U(r). The
wavefunction determines by means of

PP =p, (4.240)

Le., by its modulus, the local density ps. ¥ also contains, like the electromag-
netic oscillation, a further important attribute, namely a phase factor:

(r) = |¥(r)| explid(r)] . (4.241)

Eigenstates in superconductors can be associated with a current of particles.
Schrédinger wave mechanics provides an expression for the current which is
in a general form also valid in the presence of a magnetic field, and it is used
in the Ginzburg—Landau wave mechanics of superconductors:

jo= % (W* —iAV — (—2e)A

—ihV — (-2e)A |
T+ U2y, ) L (4242)

Here j, is the particle current density of the Cooper pairs (charge —2e, mass
2m.) and A denotes the vector potential. A frequently encountered case is
that of a superconductor, inside of which there are macroscopic regions with
a constant density of charge carriers. In this case, only the phase @ of the
wavefunction changes, and the electric current density associated with the
Cooper pairs

Ju= =26, (4.243)
is given as
i I3 {—2e §
Jns = —2e (Zme VB(T) %:A) '![’I v (4244)
In particular, it follows, for a planar wave
¥(r) = |¥|exp(ikr) (4.245)
that the current density is
hk 2e
e = —2e|®)? [ — . :
1 e|l¥| (2me + S A) (4.246)

In this way, a description has been obtained of the situation which exists in
a circular closed superconductor where a persistent current Aows. The flow
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_ondon Penetration Depth, Flux Quantisation, and Electron Tun-
nelling. Using the wave-mechanical Eq. (4.244) as a starting point, it is
possible to explain the Meissner effect and also a further characteristic phe-
nomenon, the Aux quantisation. The calculation of the curl on both sides

b of the equation yields
-_| I | u (—28)2
] = - B . .
. E ! V X Jps Ps e (4.253)

This is referred to as the London equation and it describes a basic property
of all superconducting materials. The London equation applies to all supercon-
ductors in the same way that Ohm’s law j, = o E applies to all conductors.
Combining the London equation with one of the Maxwell equations,
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V x B = ojys » (4.254)
according to
Vx(VxB)=V(V-B)-AB =-AB = 1oV X Jys » (4.255)
results in 002
i AB = ,ugpi(z_mTe)B . (4.256)

Using this differential equation, it is possible to describe the decay of a mag-
netic feld in a superconductor, for the case where the field impinges the super-
conductor at its surface. As represented in Fig. 4.31, the fall-off is described
by the solution of Eq. (4.256):

B x exp —-)-f-’— , (4.257)
L

where )y, is the London penetration depth given by

9 2Me

’\L = W (4.258)

There is a current of superconducting charge carriers in the y direction asso-
ciated with the decaying magnetic field, which is polarised in the 2z direction.
It correspondingly only flows in a surface zone of thickness Ap.

Figure 4.32 shows what happens if an initially present external magnetic
ses through a closed superconducting loop, is switched off. In
the general case, this observed that surface currents of Tconducting charge
] carriers remain in existence, with this bei arent because of a magnetic
[ field which remains. It is obs 5t the remaining flux, which flows through
i the surface enclosed b antised, and increases in discrete steps

(4.259)
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Fig. 4.31. The surface of a superconductor (x > 0) upon applying an external
magnetic field: the exponential decay of the magnetic field strength B. and the
current, js,y of the Cooper pairs.
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Fig. 4.32. The quantisatiomof thefhagnetic flux @ which remains in a ring of
superconducting tin after switchjng off an external field. The jump-like changes in
of the field H applied before the transition into

Jns=0, (4.260)
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t, in the first instance, penetrate the insulating layer, something which is
means of the tunnel effect for microscopic layers. The electrons
is, though, if there exists on the side of the superconductor an

situation on the right-ha
current only flows if t

of the figure is attained. This means that
gap is overcome with the help of an applied

(4.264)

4.4.3 The Critical Magnetic Field. Type II Superconductors

Ginzburg and Landau also showed how a thermodynamic theory for describing
the transition from the normal to the superconducting state can be developed
within the framework of the description of superconductors by the wavefunc-
tion ¥. The approach is the same as that which was used to treat other
second-order phase transitions, such as the transition into the ferromagnetic
or ferroelectric state: A suitable expansion of the Gibbs free energy density
in terms of powers of the order parameter, which controls the phase transi-
tion, is chosen. This order parameter is now the wavefunction ¥. ¥ exhibits
the desired behaviour in that, upon cooling, it sets in at zero at the critical
point T, and then continually rises. In fact, the phase transition is correctly
described by the following expression:

9(¥) = g(0) +6(T —To)|@|* +ca|#|* , where b>0 and ¢4 >0 . (4.265)

The expression is identical with those in Egs. (3.15) and (3.31) for ferro-
electrics and ferromagnets, and the conclusions derived there can be directly
carried over. The order parameter, now ¥, earlier P and M, is thermody-
namically an inner variable. Equilibrium corresponds to the minimum in the
Gibbs free energy. Plots of the Gibbs free energy density above and below 7.
are shown in Fig. 3.5. In the superconducting state, the equilibrium value is
given by analogy to Eq. (3.17) as

b(T, — T)

w2, =
| qu 204

: (4.266)
while, in the normal conducting state, it must be equal to zero. The re-
sult shows that the concentration of superconducting charge carriers, i.e., the
Cooper pairs, increases linearly upon cooling below T.:

ps= P2 T, - T . (4.267)
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H
() = g(O)—i—b(T—TC)lW]?+C4]!F[4+4Tln— (—ihY — (~26)A) ¥ f BaH’
* (1.274)

Seennfrom the point of view of quantum mechanics, the fourth term has the
meaning oka kinetic energy of the superconducting particles (charge —2€, mass
2m,). Empirically, it is also the simplest term which can take int6 account
a spatial variatign of ¥. The fifth term describes the lowering of e density of
the Cibbs free endrgy upon the penetration of a magnetic field{nto the sample
(Eq. (A.10)), somebhing which happens for the two-phasé states of type 1T
superconductors in tIe normal conducting parts and a t#fansition region with
a thickness correspondihg to the London penetration/depth.

On the basis of the Ginzburg-Landau equatiorl (4.274), two-phase struc-
tures can be handled and ax explanation canélso be provided as to under
which circumstances they appear. Tt is notDossible to explain this exactly
here, and the discussion is limitad to a fedr short explanations. In principle,
in order to determine the equilibrit ate, it is necessary to find the wave-
function ¥(r) which is associated, forxhe given boundary conditions, with the
minimum in the total Gibbs free erergy of the sample

£ [ sy - (4.275)

v

Standard variation methods can be used to solve this problem. Figure 4.36
shows a schematic répresentation of one of the solytions found in this way.
Tt represents an individual normal conducting tube itha superconducting ma-
trix. The upper/and lower pictures depict the concentxation distribution of
cting charge carriers ps(r) = |@|2(r) and the spatial variation
otic field B, respectively. For both parameterd, there is not an
abrupt clange between the two phases. As was established above, an exter-
nal magnetic field also penetrates into the superconducting patgt to a depth
corrgéponding to the London penetration depth Ar. The Ginzbyrg-Landau
théory now yields a second characteristic length, which is referred\to as the
oherence length £c; this characterises the width of the region within which
the concentration of the superconducting charge carriers changes from & value
of zero in the normal conductor to the end value |¥|2, in the superconductor.
The parameter &g can be derived from the Ginzburg-Landau equation (4.274)
by making a plausible argument. If all field contributions are neglected, g can
be re-expressed as

2 4 2
g(@(r)) — g(0) oc — lﬂ,é:} + lg’lipgj + gé% : (4.276)

where, according to Eq. (4.266), the end value of the superconducting charge
carrier concentration is given by
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b(T. - T)

[!‘plgq = 204

and

G=

S A BT )
&a is_ the only parameter in the expression, and it has the dimensions of length.
In Fig. 4.36, the only length is the width of the transition region, and it must,
therefore,‘ be determined by £g. Equation (4.277) states that g diverges upon
approaching T¢ and follows the power law

(4.277)

b x (T, -T)"Y2 | (4.278)

In the figure, Ar is chosen to be larger than £z. In fact, this is a funda-
mental prerequisite for the appearance of a two-phase structure, i.e., a type 11
superconductivity. The reason for this is qualitatively easy to recogni’se. A nor-
{nal conducting tube only spontaneously forms in a superconducting matrix
if a lowering of the Gibbs free energy of the system results in the presence
gf a magnetic field H. Here, two terms, which act against each other, come
into consideration: Firstly, the increase in the Gibbs free energy beca’,use of
the higher value in the normal conducting phase corresponding to Eq. (4.272)
and, secondly, the lowering in the Gibbs free energy due to the pervletr‘atiozi
of the magnetic field, as described by Eq. (A.10). Even if the core region of
the normal conducting tube should be vanishingly small, it has, because the
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F1g 4.36. }’lI‘he distribution of the magnetic field B and the density of Cooper
pairs ps in the region of a normal conducting tube. The Lond i
A1 and the coherence length £q. on peretration depth
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