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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 
INSTITUTT FOR FYSIKK 
 
Contact during the exam: 
Department of Physics 
Professor Jon Otto Fossum, mob, 91139194 
 
 

EXAM: TFY4245 FASTSTOFF-FYSIKK VK 
 

Monday 18. May 2009 
Tid: kl 09.00-13.00 

 
Allowed exam material: Alternative C 

 Standard pocket calculator 
 Rottman: Mathematical Formula (all language editions) 
 Barnett og Cronin: Mathematical Formula 
 English-Norwegian and/or Norwegian-English Dictionary 
 
 
The exam consists of: 

1. The first page (the present page) which must be delivered with answers to the 
multiple choice questions.  

2. 3 ”normal” Problems 1, 2 and 3 (Appendix A) 
3. One set of multiple choice questions, Problem 4 (Appendix B) 

 
The three ”normal” problems count altogether 50%, and the multiple choice questions 
count altogether 50%.  Only ONE of the alternatives A-D must be marked for each of the 
20 multiple choice questions. Correct answer gives one point, wrong answer gives zero 
points. 
  
Answers to the multiple choice questions in Appendix B: 
 
Question 1 2 3 4 5 6 7 8 9 10 
Answer D C B D A B D D D B 
 
Question 11 12 13 14 15 16 17 18 19 20 
Answer B D A B A B A D D D 
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Solutions referred to in boxes inserted in the text below 
 
Problem 1. Dielectrics and Ferroelectrics 
1a) 
Assume that we are studying a dielectric sample applying an external electric field E 
to it, such that the responding polarization P = ε0χE, where χ = ε-1 is the dielectric 
susceptibility, ε is the dielectric constant and ε0 is the vacuum permittivity.  
 
• Discuss the distinction between orientational (or) Por and distortional (d) Pd 
polarizations respectively, in dielectrics. 
Strobl pages 94-95 
 
In a dielectric, one needs to distinguish between the externally applied field, E, and 
the local field, Eloc, in the sample. It is the local field at the site of a molecule that acts 
to polarize or reorient that molecule. The relation between the polarization P and the 
local field for monomolecular dielectrics is 
 

P = Por + Pd = ρβEloc        (1.1) 
 
where ρ is the particle density, and β = βor + βd is the polarisibility. 
 
• Discuss without entering into details, how it can be shown that for isotropic liquids 
and symmetric crystals  
 

Eloc = E + P/(3ε0)        (1.2) 
 
where E is the externally applied electric field, and P/(3ε0) = EL is the so-called 
Lorentz-field, which represents the average (mean-field) contribution to Eloc acting on 
one molecule from all the other molecules in the sample. 
Strobl pages 98-100 
 
• Show that for this case: 
 

(ε-1)/(ε+2) = ρβ/(3ε0)        (1.3) 
 
which is the Clausius-Mosotti equation for dielectrics. 
Strobl page 100 
 
1b)  
Por is related to the orientation of molecular dipoles in the dielectric. The potential 
energy, u, of a molecule with dipole moment p0 in an electric field Eloc is: 
 

u = -p0Eloccosθ        (1.4) 
 
where θ is the angle between the dipole - direction and the Eloc - direction. 
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Defining the orientational distribution function for dipolar molecules in the dielectric 
as w(φ,θ), and thus obtaining the fraction of molecular dipoles in the angular interval 
dφdθ as w(φ,θ)sin(θ)dφdθ (for 0<θ<π and 0<φ<2π), we get by using standard 

Boltzmann statistics i.e. w(θ,φ) ∝ exp(-u/kBT), where kB is the Boltzmann constant 

and T is the temperature, that:  
 

Por = ρp0<cosθ> = ρp0(∫dφ∫dθw(φ,θ)sin(θ)cosθ)/(∫dφ∫dθw(φ,θ)sin(θ))  

= ρp0∫dθ[2πsin(θ)cos(θ)exp(xcos(θ))]/Z   (1.5) 
 
where the variable x = p0Eloc/(kBT), the integral over θ run from 0 to π, the one over φ 
from 0 to 2π, and the normalization Z is the partition function: 
 

Z =∫dφ∫dθw(φ,θ)sin(θ) = ∫dθ[2πsin(θ)exp(xcos(θ))]  
= 2π[exp(x)-exp(-x)]/x     (1.6) 

 
• Show that for temperatures T >> p0Eloc/kB, the orientational part of the polarisibility 
in a dielectric can be written as: 
 

βor ≈ (p0)
2/(3kBT)        (1.7) 

Strobl pages 101-102 
 
• How can this result be used in a practical experiment to measure the distortional 
polarisibility βd? 
Strobl page 102 
 
1c) 
• Using Equation (1.3), show that  
  

ε0χ = ρβ/(1-ρβ/(3ε0))        (1.8) 
Strobl page 131 

 
• Discuss what happens, and what it means in terms of physics, if β increases with 
decreasing T in such a way that the Lorentz-field contribution ρβ/(3ε0) = 1 at some 
temperature T = TC.  
Strobl page 131 
 
The simplest T-dependence one can think of for this case, is linear in T,  
i.e. ρβ/(3ε0) = 1 - c(T-TC), where c is a constant. 
 
• How does χ depend on temperature for this case, for temperatures T>TC? 
Strobl page 131 
 
1d) 
Landau developed a phenomenological thermodynamic theory applicable to 
ferroelectrics (as well as other systems displaying phase transitions) describing the 
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observations that the susceptibility diverges on approaching TC both from above and 
below in T. 
 
Landau theory assumes that near the phase transition temperature TC, it is possible to 
expand the Helmholtz free energy in powers of the order parameter η (in the case of 
ferroelectrics η = P), thus 
 

f(η,T) = f0 + c2η2 + c3η
3 + c4η

4 + c5η
5 + c6η

6 + .......+ cnη
n + ......  (1.9) 

 
We assume that c2(T) = b(T – TC), where b is a positive constant, and also assume that 
c3,c4, c5, c6, ……, cn, ……… are constants independent of T. 
 
• Argue that for ferroelectrics (second order phase transitions by observation):  
c3 = 0, c4 is positive, and one need not consider any cn  for n > 4, i.e cn = 0 for n > 4.  
Strobl page 132-133 
 
• Sketch and discuss f(η,T) for various T.  
Strobl page 132-133 
 
• Derive the temperature dependence of the order parameter for this case.  
Strobl page 132-133 
 
Assume that there exists an external field, X (in the case of ferroelectrics X = E), 
which couples linearly to the order parameter, η, i.e. an extra term -ηX must be added 
in the free energy expression (i.e. we use Gibbs free energy rather than Helmholtz free 
energy). 
 
• Use Landau theory to derive an expression for the temperature dependence of the 
susceptibility both above and below TC, thus also verifying the result obtained in 1c).  
Strobl page 134 
 
Problem 2. Diffusion 
2a) 
Diffusive motion of individual particles can formally be described by the time-
dependent auto-correlation function g1(r,t), defined such that the quantity g1(r,t)d3r 
gives the probability that a particle moves during a time t from its starting point into a 
volume element d3r which is r away from the starting point. g1(r,t) is a probability 
distribution, and as such is normalized, i.e.  
 

∫g1(r,t)d3r = 1         (2.1) 
 
We follow Einstein, and choose to break up g1(r, t’+t) into two steps, and we write 
 

g1(r,t’+t) = ∫g1(r-r',t’) g1(r',t)d3r'      (2.2) 
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where the first step, during time t’, achieves a displacement r-r' of the particle, while 
the second step, in the remaining time t, brings the particle to r. 
 
• What is the basic assumption underlying that we write the total probability as a 
product of two individual probabilities representing the two steps? 
Strobl page 290 
 
• Show that Equation (2.2) can be rewritten (assuming t<<t’ and |r'|<<|r|) as a 
diffusion equation: 
 

∂g1(r,t’)/∂t = DS∇2g1(r,t’)       (2.3) 

 
where the self-diffusion coefficient  
 

DS = (∫g1(r',t)|r'|2d3r')/(6t) = <|r'|2>/(6t)     (2.4) 

 
represents the mean-squared displacement per unit time (divided by a factor 6). 
Strobl page 291 
 
2b)  
Consider a suspension of non-interacting colloidal particles, and assume the 
following:  

i) A particle density gradient ∇ρ resulting in a diffusive particle current described by 

Fick’s law  
 

jD = -DS∇ρ         (2.5) 

 

ii) An external force (for example gravity) f = -∇upot, where upot is the potential energy 

difference set by the external force, driving particle current  
 

jf = ρνf = (ρ/ς)f       (2.6) 
 
where ν is the mobility, and ς is the friction coefficient. 
 
iii) At equilibrium, the particle density ρ = ρeq = exp(-upot/kBT) according to 
Boltzmann statistics, where kB is Boltzmann’s constant, and T is the temperature. 
 
Using these three assumptions: 
• Show how one derives the Einstein relation: 
 

DS = kBTν = kBT/ς       (2.7) 
Strobl page 294-295 
 
Considering the result obtained in Equation (2.4): 
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• Discuss the physics contained in the Einstein relation for the “self-diffusion 
coefficient”. 
Strobl page 295 
 
Finally: 
• Discuss the difference between the “self-diffusion coefficient”, DS, and the 
“diffusion coefficient”, D. 
Strobl page 294 
 
2c)  
Equation (2.1), including the boundary condition r(t=0) = 0, i.e. g1(r,t=0) = δ(r), has 
the Greens-function solution  
 

g1(r(t),t) = (1/(4πDSt))3/2exp(-|r(t)|2/(4DSt))     (2.8) 
 
For non-interacting particles the time dependent structure function S(q,t) equals the 
Fourier transform of g1(r(t),t). 
 
• Discuss (briefly in terms of words and equations) the theoretical basis for a light-
scattering experiment which may be used to measure DS for non-interacting colloidal 
particles in solution. The scattering vector q is the difference between the outgoing 
and incoming wave-vectors respectively. 
Strobl page 319-320 
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Problem 3. Polymers 
3a)  
We define the end-to-end vector of a coiled polymer chain to be R.  
Assume that the chain can be broken up into NS individual uncorrelated segments aj (j 
= 1,2,3,.....,NS), i.e.  
 

R = Σj aj         (3.1) 
 
For uncorrelated unrestricted aj vectors, the chain geometry is equivalent to stepwise 
independent Brownian motion of a diffusing particle, and we can directly adopt the 
results obtained in Equations (2.4) and (2.8) for the Gaussian probability distribution 
w(R) for the chain end-to-end distance R, and its mean-squared end-to-end distance  
 

R0
2 = <|R|2> = ∫w(R)R24πR2dR     (3.2) 

 

• Show that R0
2 ∝ N ∝ M, where N is the degree of polymerization, and M is the chain 

molecular weight. 
Strobl page 38-39 
 
• Show that a coiled Gaussian chain is an object with fractal dimension Df = 2. 
Strobl page39 
 
3b)  
The "tube model" for polymer dynamics introduced by Sam Edwards, takes 
entanglement effects among different chains into account in order to describe the 
chain dynamics in a polymer sample. This is a mean-field type model that focuses on 
individual chains, that includes interactions with other chains by representing them 
collectively as a “tube” inside which an individual chain is restricted to move, like a 
reptile (the de Gennes "reptation model") in linear diffusive motion (Equation (2.7)). 
 
• Show that the disentanglement time, τd, for entangled polymer chains scales as 
 

τd ∝ M3         (3.3) 

Stroble page 310-312 
 
3c)  
Internal relaxation times such as τd, may be measured by means of dielectric 
relaxation experiments. This can be described by a general set of linear equations 
valid also for dielectric measurements. 
Consider a physical system that is forced out of equilibrium by applying a time (t) 
dependent external force, σ(t), to it. For linear response, the response field 
perturbation of the system is: 
 

γ(t) = α σ(t)         (3.4) 
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where α is a linear response function which is characteristic of the specific system 
under consideration. 
 
• What do γ, α and σ represent for the dielectric case? 
Sroble page 93 
 
Assuming that after “turning off σ”, the system returns to equilibrium, γ(t = ∞), at a 
rate, dγ(t)/dt, which increases proportionally with the magnitude of the perturbation, 
γ(t), we may write: 
 

dγ(t)/dt = (γ(t = ∞) - γ(t))/τd       (3.5) 
 
where the system characteristic time, τd, is the constant of proportionality between the 
rate and the perturbation. Equation (3.5) represents a simple relaxation process 
(Debye relaxation). 
 
Assume, that we apply a time dependent periodic force to the system, such that: 
 

σ(t) = σ0 exp(-iωt)        (3.6) 
 
where ω is the applied frequency, and σ0 is the force amplitude. (i = √-1) 
The resulting linear response can be written: 
 

γ(t) = α(ω) σ(t) = γ0 exp(-iωt + iδ(ω))     (3.7) 
 
where δ(ω) is the phase difference between the force and the response, and and γ0 is 
the response amplitude. 
 
• Use the above Equations in order to derive an expression for the complex frequency 
dependent linear response function 
 

α(ω) = γ(t)/σ(t) = α'(ω)+iα''(ω)      (3.8) 
 
for the case of a simple relaxation process like the one in Equation (3.5).  
Strobl page 90-91 
 
• Sketch both α'(ω) = Re(α(ω)) and α''(ω) = Im(α(ω)) for this case.  
Strobl page 91 
 
• The real and imaginary parts of the compliance are often referred to as the storage 
part and the loss part respectively. Discuss the physics behind this distinction. 
Strobl page 82-83 
 


