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Table – Answers to Problem 4 questions 
 

 

1 2 3 4 5 6 7 8 9 10 
B A D B or D B A C A C D 

 
 
Problem 1. 
 
a) Equation of motion: 
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The relaxation time for electron-lattice interactions is even at relatively low temperatures  ~ liq. N, 2-
3 orders of magnitude shorther than those associated with electron-electron or electron-defect 
interactions. Thus, resistive loss in metals is in most circumstances properly accounted for taking into 
account only inelastic collisions between conduction electrons and phonons. The resistivity and 
phonon exitation typically shows the same temperature dependence. 
  
b) Introducing plane wave solutions into the e.o.m., and neglecting losses, we find for the single 
electrons 
 

  2
e rm r eE ev B    

  

 

We introduce and transfer the single electron e.o.m. to a mean field variant for the collective 
electron system 

P
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Whereas the individual electron velocities may be substantial, the net drift velocity  is typically 

of the order ~  10-5 m/s. Since B/E  =  v/c, contributions from the magnetic field to the collective 
electron motion may be neglected. 
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We introduce plane wave solutions and take the long wavelenght limit, i.e.  0k 

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c) From the wave equation we find 
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We introduce the plasma response function from b) to arrive at 
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Sketch 
 

 
i) ω < ωp:   => 2 ( )( ) 0;    0 '' ~ i k r t k r i tk k i k E e e e''             

  
,  i.e. exponential damping 

of the wave, equivalent to absorption. Hence, the electromagnetic field does not propagate into the 
media, and no plasmon exitations takes place (apart from in a shallow region close to the surface). 
 
ii) ω = ωp:  
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This corresponds to a longitudinal mode, with the plasma polarisation ||P k


, where all the free 
electrons are collectively displaced with respect to the positive ion cores. The associated 

depolarisation field acts as a restoring force on the gas. The longitudinal mode is only accessible at 
very low, near-zero k-values. 

E
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iii) ω > ωp:  ( ) 0    D k    


   
These are transverse plasma oscillations. k > 0, so waves can propagate through the material, i.e. the 
metal is optically transparent. As the frequency is indreased, the plasma oscillations tend 
asymptotically toward free-space wave propagation.  
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Problem 2            
          
The Cooper-pairs can be associated with wave functions on the form 1/2 ( )i rn e   , leaving the 

concentration of pairs * constant.n     The generalised momentum operator for a charge q 
moving in an electromagnetic field is 
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The current density is defined as  
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where we have taken into account that each cp consists of two electrons. 
 
Taking the curl on both sides, we obtain 
 

  [ ( ) 2
e

en
]j r e A

m
     


  

 
The first term on r.h.s. is the curl of a gradient and is always 0, thus 
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Apparently, there is a factor 2 too much on the r.h.s., but remember that n now is the Cooper pair 
concentration, whereas the n in the London equation is the concentration of individual electrons. 
Accordingly, ne = 2ncp, and our expression for the cooper pair current density is consistent with the 
London eqn. 
 
 
b) Recalling that the London equation relates the superconducting current density to the penetration 
depth of the magnetic field into the superconducting material, which is consistent with the Meissner 
effect without violating classiscal relations of electromagnetism. 
 

Accordingly, deep into the sc loop 0j 
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We integrate on both sides over a closed path C in the loop interior 
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The integral on the l.h.s must correspond to a phase shift 2 ,      1, 2,...s s      
 
The last integral on the r.h.s. is recognized as the magnetic flux through the loop, and in result  
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The negative sign is easily removed, e.g. by redefining the positive direction for  dA


  
 
c) The stabilizing energy of the superconducting state corresponds to the critical magnetic field 
energy that may be surpressed by the material in the superconducting phase. From thermodynamics 
we find  
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Perfect diamagnetism in type I s.c => M H 
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At T = 0 K, we obtain 21
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When H -> HC , the critical magnetic field, the normal and superconducting states are in equilibrium 
and must co-exist with the same internal energy, i.e. UN(HC)= US.C(HC). 
 

Finally, if the normal state is non-magnetic 0 0( )   ( )N NB M H H U H U     (0)
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Thus,  
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The flux corresponding to the critical magentic field is given as max max 0 maxloopB A s    when we 

assume a uniform flux density through the loop. 
 
Finally, we arrive at 
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i. As the temperature is increased, HC reduces, and accordingly smax is reduced 
 
ii. The total flux through the loop  is restricted in the same fashion as in b), 

but since the flux from the external field,
0tot ext sc s      

ext , is not quantizised, sc must adjust itself for to 

meet with the requirements. smax is not affected. 
tot

 
iii. If the loop is made from a type II superconductor, smax reaches its maximum at Hc1. Any further 
increase in the magnetic field Hc1 < H < Hc2, leads to formation of vortices in the superconducting 
material, and accordingly migration of flux lines from the loop interior into the metal ring. The flux 
density in the ring interior remains constant between Hc1 and Hc2. 

 

 

Problem 3 
 
a) From the Curie Brillouin relation we have 
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In the paramagnetic phase, we normally assume weak magnetisation/low fractional alignment. 
Accordingly, μH << kBT, and we can use the small x approximation to arrive at 
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We easily verify that M = 0 in the absence of external fields, and that we have paramagnetic 
alignment when the external field is non-zero. The only issue of concern would be when  
T -> Cλ, for which the expression becomes singular. 
 
In the ferromagnetic phase, we encounter spontaneous magnetisation and alignment of magnetic 
moments even in the absence of external fields. It is not anymore reasonable to assume μH << 
kBT, and we must use the full Curie Brillouin relation.  
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It is not possible to simplify this any further, or to find analytical solution to the equation. 
The Brillouin function is however positive for all positive arguments, i.e. 
 

 
 
Thus M is non-zero both for Hext=0, and Hext ≠0. 
 
b) With the correct answer in a), it is straight forward to find 
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It is also relatively simple to derive this relationship using the mean field appraoch given in the 
text, see e.g. Kittel  p. 323-324. 
 
The CW law is reasonably precise at higher temperatures, but as one approaches TC, it starts to 
deviate from experimental measurements. The reason is that as we approach TC it may no longer 
be appropriate to use the small x expansion of the Brillouin function. 
 
 
c) System in thermal equilibrium at any temperature, 
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For a linear system, the susceptibility  
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where M0 is the equilibrium value of the order parameter in absence of external field. 
 
Thus, for T > TC where M0 = 0 
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and for T < TC , system in equilibrium and no external field leaves  
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Below Tc ,  g2 < 0, so g4 > 0 gives real non zero solution, and the minimum in 
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Thus, below Tc :  2
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Direct comparison with the paramagnetic suceptibility in b), reveals γ =1/C 
          


