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Problem 1. 

 

a) Equation of motion: 
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No additional polarisation of the ion cores by the field, such that the field experienced by the ions is 

equivalent to the external field, i.e. no local field contribution (
*

ext locE E E  ) 

 

In the long wave length limit (k-> 0), we assume no spatial variation of the field, i.e. the 

instantaneous ion-pair displacements are the same anywhere inside the sample.  

 

Thus, the total polarisation caused by such ion displacements (dipole moment per unit volume) is: 

 

P nq u   

 

Hence, we may express a collective e.o.m. in terms of field quantities: 
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The time dependence of the polarisation is determined entirely by the time structure of the external 

electric field. Accordingly, 
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The long-λ limit is generally a very reasonable approach to the phonon-photon coupling. This is 

easily seen by comparing the electromagnetic dispersion relation ω=ck to typical phonon 

frequencies, implying that such resonance occur predominantly at very small values of k. 

 

b) Wave eqn. 
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Dispersion relation (general): 
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In the short wavelength limit, we get: 
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Since ω>0 for any wave, the positive root is the only possible non-trivial solution.  

 

c) The long-λ dielectric function 
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The optical dielectric constant ε(∞) ≈1, and the static dielectric constant  
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Thus, we may express the dielectric function 
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The special situation where ε -> 0 correspond to a situation where the incident photon frequency 

approaches that associated with a longitudinal optical phonon (even if coupling to longitudinal 

phonons is impossible due to the transversal nature of electromagnetic fields), i.e. 
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 Problem 2. 

 

a)  Introduce the
1/2 ji

j jn e


   solutions into the time depedent Schr.eqns. When tunnelling is 

assumed to take place, both amplitudes and phases will be time dependent quantities 
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Multiply the eqns with their respective complex conjugated wave functions, 
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rearrange 
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Separate real and imaginary terms 
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With the two superconductors identical n1 = n2 
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The second eqn. explicitly gives 
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The current flow from superconductor 1 to 2 is proportional to 2 1     
n n

t t

 
 

 
, (dim: # CPs/(m

3
s), 

i.e.  equivalent to the current density divided by unit length and the charge of the cooper pair ) so the 

current density of cooper pairs through the barrier could be expressed on the form 

0 2 1sin( )j j     

 

From the relation it is seen that the Josephson DC-current is driven by the phase difference between 

the two Cooper-pair wave functions (or in other words the difference in cooper pair concentrations 

on each side of the barrier). If the two are in phase, there is no cooper pair current through the 

barrier. 

 

  

 

b) The two junctions make up a closed superconducting loop, and accordingly the magnetic flux that 

passes through the loop will be quantized.  The flux can be expressed 

0 s s
e


      

 

The expression for flux quantisation through the superconducting loop came as a result of the 

Meissner effect, and must therefore be contained in the London equation. We do not need a full 
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deduction here. It is sufficient to realize that for a full loop the phase shift, , of the current must be a 

multiple of 2π, i.e 

 

2
2

e
s      

  

Two identical parallel junctions on the right and left hand side of the loop, with phase shifts r  and 

l, respectively.  If the direction indicated in the figure is taken as positive, we have for a full 

(counter clockwise) loop 
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The last equation can be rephrased to yield 
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e e
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Thus, the total current density along the indicated direction, assuming two identical Josephson DC-

junctions in parallel is 
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The last expression is analogous to that found for two-source interference in optics, see e.g. any text 

book in basic univ. physics. The device is a so-called Superconducting Quantum Interference Device 

or SQUID. It is used mainly to carry out very precise measurements of magnetic fields, alternatively 

to measure very weak magnetic fields. 

 

It does not matter for the basic functionality of the device if the superconductors are of type I or type 

II. In the latter case flux quantisation within the loop still apply until HC2 is reached. Yet, if the sc’s 

are of type II, there will be a small difference. In the case of a type I, the device may work to 

measure flux increase for fields monotonically up to HC. For a type II, the maximum flux within the 

loop will be limted by HC1, whereas for any further increase of the field between HC1 and HC2 the 

loop still functions but the flux lines corresponding to increase of the field, will migrate into the sc’s 

to form vortices.  

 

 

Problem 3 

 

a) From the two ions we get 

Mn
2+

: 3d
5
. Crystal field splitting => J = S = 5/2, L = 0.  

 

3 1 ( 1) ( 1)
( ) 2

2 2 ( 1)

S S L L
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J J
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1/2 1/25 7
( )( ( 1)) 2( ( )) 5.916

2 2
p g JLS J J     

 

Co
3+

: 3d
6
. Crystal field splitting => J = S =2, L = 0.  
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For the total system (along c), the moments of Co
3+

 cancel, and we are left with a net 

contribution from Mn
2+

, i.e. 2 5.916AB Mn
p p   . 

 

 

b) No external field. The sign of the exchange coeffs determine if parallel or antiparallel 

alignment is favourable, and generally negative sign favours anti-parallel moments (logic, 

since the effective field should be opposite to the neighbour site magnetisation). Since all 

exchange should be antiparallel (given in the text), we are stuck with  

 

Exchange field site A: 

A AA A AB BH M M      

 

 

Exchange field site B: 

B BB B AB AH M M               

 

Energy densities: 
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): Energy minimum with antiparallel magnetisation in A and B sites. 

 

 

c) Only AB interactions. Effective fields 

 

A-sites:  A ext AB BH H M   

B-sites:  B ext AB AH H M   

 

Paramagnetic response with weak magnetisation of both A and B sites, so Curies law may be 

applied to describe the mean field temperature dependent paramagnetic responses of the A 

and B sites 
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In zero external field (Hext=0) these equations have non-zero solutions for MA and MB when 
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 Since this is inconsistent with a paramagnetic response, we conclude that it corresponds to a 

 temperature, TC, where the moments order spontaneously into a ferromagnetic phase, i.e 

 

C AB A BT C C  

 In the paramagnetic phase the system must obey a Curie-Weiss type of relationship. Assume 

weak magnetisation, so that a linear susceptibility holds (except very near TC): 
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The result looks messy, but yields a paramagnetic susceptibility similar to that of a ferromagnet. 

 

The ferrimagnet has an antiferromagnetic arrangement of unbalanced magnetic moments, and 

will therefore yield a temperature dependent magentisation similar to that of a ferromagnet in 

zero external field (i.e. in the perfect ferrimagn. lattice at T=0 there is a net contribution per unit 

AB of 5.91 Bohr magnetons, and these are parallel to one another.) 

 

In zero external field we should therefore expect an archetype 2
nd

 order response function 
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Since the array itself represents and antiferromagnetic ordering, the ferrimagnetic response 

function may differ substantially from the ferromagnetic one in external fields. Furthermore, the 

spin waves of the ferrimagnetic lattice are of an antiferromagnetic nature (but cases with 

unbalanced moments extends well beyond our curriculum). 

 

Last question: 

Circumstances where M(T) ->0 (well off TC, of course). According to the simple models covered 

within the curriculum, this should not be possible. However, one could imagine a hypothetical 

case for a second order transition with relatively weak opposing moments close to TC. If the 

opposing moments evolve differently with temperature, there could be a point below TC where 

they cancel out completely like in a perfect antiferromagnet. Systems like this do exist. 


