
Solutions Exam 2015 

 

 

1 a)  

 

E1 = macroscopic depolarisation field. Relates to the sample shape and the far field net 

polarisation of the whole sample. 

 

E2 = Lorentz-field. A virtual field correcting for the effect of surface polarisation on a cut-out 

sphere used to calculate the microscopic near-field contributions at the central lattice point 

coincident with the origin of the sphere. The Lorentz field is mesoscopic. 

 

E3 = A sum of the microscopic field contributions from all dipoles inside the cut-out sphere as 

they apply to the lattice point at the sphere origin. 

 

 

All atoms in lattice points w. cubic symm, xi = yi = zi; dipole contribution p(+/-) per atom, E3 at 

the central lattice point at the origin: 
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1 b) The Maxwell relations in the absence of external fields (no free charges, no magnetisation) 

 

 i. 0 0( ) 0   =>  0   or  ||ik rE k E e E E k      

 

 

 ii. 0 00   => 0    or    ik rD k D e D D k         

 

   Case i:  

  ||P k  :) longitudinal mode.     
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   Case ii:        P k  :) transversal mode.         
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The non-zero dielectric response function relates to transversal modes.  The result indicates that 

spontaneous polarisation will occur for all values of k, but may only be valid in the long-λ limit. 

We must restrict ourselves to long λ, since the polarisation, and hence the dielectric response 

function, must be expected to vary spatially on the atomic scale when all charges are bound to the 

atom or in interatomic bonds.  

 



   

   Case i - longitudinal:  
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     Case ii - transversal:          

 

  
0 0 0

0
3 3 3

loc T

P P P
E E

  
      

 

Thus, the local electric field is negative in the longitudinal direction, acting as a conservative type 

restoring force suppressing longitudinal displacements. For the transversal mode, however, the 

local field is positive, i.e. it acts in support of the lattice displacements. 

 

 

1 c) Oppositely charged ion-pairs (±q)  with c.o.m. displacements ∆r, give dipole contributions 

p q r P nq r     .  The eqns of motion are 
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T:  
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In the case of L, the e.o.m. is that of a simple harmonic oscillator with 
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where kL serves as a force constant. 

 

 

For T, the equation yield an imaginary frequency, i.e. 
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frequencies may occur in general Fourier transforms, a purely imaginary frequency corresponds to 

life-time of some form for an exited state, i.e. 
( '') ''i i t te e    (chose the negative root) . For our 

simple model, however, life time concepts makes no sense. Accordingly, the only physically 

meaningful solution to the second equation is with ωT = kT =0. 

 



In summary: (0) , 0 and 0T Tk    . This means that the EFFECTIVE restoring forces 

of the transversal mode vanishes, i.e. the lattice goes “soft”, and the lattice charges may undergo 

spontaneous polarisation.  

 

Phonon softening of the lattice relates to critical fluctuations in the response function (= 

polarisation=order parameter) taking place close to TC (above and below). At TC, ωT = kT =0 , 

associated with a static displacement of the ions/charges, representing a symmetry braking of the 

high-temperature disordered and more symmetric phase, and gives the basis for an ordered phase 

with a lower symmetry. Such critical fluctuations and anomoalous behaviour of the response 

function (order param) in the vicinity of TC is a footprint of a second order transition. In first order 

transitions, the response function is discontinuous at TC but not anomalous at temperatures above 

and below the transition point. 

 

 

2 a) 

 

At equilibrium fs.c. should attain its minimum value wrt any of its variables, incl. |ψ| 
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The n.s. => s.c. transition is a second order transition with disordered electrons above TC ordering 

into Cooper-pairs. Thus, α and β should be defined such that the free energy reduces by ordering 

below TC, while increasing by ordering above TC. The standard choice for α(T) in a Landau 

second order transition is 

 

( )T T    where const >0 ; ( )CT T T      

 

The α and β functions follows from a full series expansion of the free energy function, where α 

should collect all differential terms of second order in the order param, whereas β should collect 

all 4th order terms. Except for terms that are pure 2nd and 4th order expansions in ψ, all other terms 

collected by the two functions will be powers of ΔT.  

 

From the Ginzburg-Landau equation, without any spatial variation of the order param, equilibrium 

should correspond to 
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For the free energy density we find: 
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Below TC:  ( ) 0T  Root real if ( ) 0T  , and the ordered state ( 0  ) is a possible solution 

Hence, below TC keep ( ) 0T  , so that the ordered state has the lowest energy density. 

 

Above TC: ( ) 0T  Root real if ( ) 0T  , and the ordered state ( 0  ) would become the 

preferred state. By retaining ( ) 0T  , the root becomes imaginary, leaving the disordered state 

with 0    as the only physical solution.  

 

Close to TC it is also reasonable to treat β as a constant, independent of T. β collects all partial 

differentials of f which is to the 4th order in ψ, and close to TC these would be assumed to be 

smaller and to change more modestly with T than the terms collected in α which is of 2nd order in 

ψ. It is not so important to account for this, and neglecting it has no consequence for the following 

tasks of the exam. 

 

 

2 b)  

The order-parameter 
i (r)

0( ) ( )er r   is a complex quantity which must contain information on 

the ordering of free electrons into Cooper-pairs at the n.s->s.c transition. 

 

With only even powers in ψ in the expression for the free energy density, we can 

define
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The current density: 
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Concerning the phase: 

It can be seen from the expression for the current density that the phase term relates to the local 

motion of Cooper-pair c.o.ms, i.e. the local superconducting current density. 

 

2 c) Bulk superconductor => Meissner effect, no magnetic fields, 0A  , and no spatial 

modulations, i.e. cp( ) const=r n   

 

Then, the Ginzburg-Landau eqn. gives 

 



 

2

2

( ) (T) | ( ) | (T) 

( )
| ( ) |

(T)

              

cp

cp

T r n

T
r n

   






  


    

for a system in equilibrium at T < TC 

 

The critical field is defined as 
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3 a) Weak magnetisation in the paramagnetic phase, so we may apply Curies law:  
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    The magnetisation is given by 

 

A-site lattice:    ( )

B-site lattice:    ( )
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At  T = TN the system should undergo spontaneous magnetisation, even in the absence of external 

fields. Thus: 
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To find the paramagnetic susceptibility of the total system, first express the total magnetisation of 

the two connected sublattices: 
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Thus, 
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3 b) Below the transition temperature, the two sublattices spontaneously order into two 

antiparallel systems, MA = - MB, so 
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Accordingly we should use the Curie-Brillouin law, which gives us  
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The ½ prefactor enters since the N atoms are parted into two antiparallel spin systems. 

 

J=1/2: 
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To find the Neel-temperature, we select one of the two sublattice systems, and let T -> TN  

from below. At the second order transition temperature, and in the absence of external fields, 

the magnetisation of each subsystem will be weak, so 

 

For small x tanh x x  => 
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Low-T convergence: 



 

Set: 
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A spin wave approach to the temperature dependence of M gives rise to the so-called Bloch 

T
3/2 

law, whereas the mean field approach suggests an exponential T-dependency. The Bloch 

T
3/2 

law has been found to fit well with low temperature experimental results. 

 

In reality neither will give an accurate description of the low temperature trend for the 

antiferromagnet. The mean field approach has its already mentioned deviating trend at low T 

for both spin systems, and the Bloch T
3/2

- law is derived for a single parallel spin system with 

n.n. exchange only, not two exchanging antiparallel systems. It is therefore likely that the 

antiferromagnet require a more complicated spin wave based model. 

 

 

  

 

 

 

 

  


