
Solutions Exam 2016 

 

Problem 1. 

 

a) E.o.m for an individual electron:  
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          Introduce plane waves to obtain 
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         where we have introduced the free electron velocity expressed in terms of k   

 

For the whole free electron plasma, we introduce the collective response function 

P ner  , and furthermore restrict ourselves to the long wavelength limit, i.e. 0k  , so 

that the e.o.m. transfers to the following mean field e.o.m for the whole plasma:  
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        Employing Maxwell equations, we find 
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b) Employing the wave equation, we find 
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Introduce the plasma response function from a) without the imaginary loss term, to arrive at 

 

 

2 2
2 2 2

2 2 2

  ( )

/

p

r

p r

c k

c k

    


  

  

  

 

 



Sketch 

 

 
 

For ω = ωp:  
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This corresponds to a longitudinal oscillation mode, with all the free electrons collectively 

displaced with respect to the positive ion cores, such that the associated depolarisation field 

E acts as a restoring force on the gas.  

Since the longitudinal mode implies plasma polarisation ||P k , it cannot be excited by a 

(transversal) electromagnetic wave. It may, however, be excited by charged particles, e.g. 

electrons.  

   

c) Express the fields on each side of the interface via the potential gradient: 

,      1,2i i i i iD E i         

  

 By the boundary conditions for the displacement field, we get 
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Concerning the free electron model versus a more realistic nearly free electron model for the 

plasma behaviour, it suffices to compare the free electron band structure to the one we obtain by 

employing the Bloch wave formalism. The discrepancies between the two approaches are found in 

the vicinity of the Brillouin zone edges, where band gaps open up when the periodic potential is 

accounted for. In other words, the differences between the two approaches are located mainly at 

relatively large k-values. Since the long wave length model is limited to analysis for k values close 

to the Brillouin zone center, there is no discernible difference between a free electron approach 

and a more sophisticated model for the conduction electrons. 

 

 

Problem 2 

 

a) Sketch 

 
 

 

For a type I s.c., magnetic flux is expelled (Meissner effect), causing a perfect 

diamagnetic response, i.e. M=-H, until a critical field HC is reached. At HC the 

supeconducting state becomes unstable, and the conductor returns to normal state. 

 

For a type II s.c. the behaviour is identical to type 1 up to H=Hc1. At this critical field 

the s.c. enters into the so-called vortex state. The bulk material remains 

superconducting, but allow for small islands (or vortices) to penetrate into the 

material. The vortex interior is in normal state and thus allow for magnetic flux to 

penetrate the material. The external field can be increased up to Hc2 by creating more 

and more vortices. At  Hc2, however, the density of vortices is saturated. Forming one 

more vortex would imply a density which exceeds the absolute minimum average 

vortex separation distance, i.e. the coherence length. The latter is the minimum spatial 

distance required for the existence of Cooper pairs. Thus at Hc2 bulk superconductivity 

breaks down for the type II s.c., and it returns to normal state. 

 
 

b) From Maxwell, 0 0 ( )
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, assuming no displacement currents 

or Amperian currents/magnetisation currents. 

 

Take the curl once more, and introduce the superconducting current density 
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We have a straight, cylindrical type I superconductor. The London equation applies to 

both the B-field and the superconducting current density, as it relates the two in 

accordance with both the Meissner effect and Amperes law. 

 

Accordingly, the superconducting current density must also satisfy 
2 2

Lj j  . A 

solution to these equations inside the cylindrical cross section superconductor is 

 
( )/ ( )/( ) ( )   and   ( ) ( )L LR r R rB r B R e j r j R e       

 

On the outside of the conductor (r > R),  
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  Sketch: 

 

  

 
 

λL is the London penetration depth, i.e. a parameter that describes partial penetration of 

the B-field into the superconductor, and also the spatial region in which a superconducting 

current may flow if consistency with the Meissner effect and Maxwells eqns is to remain 

valid. 

 

 

 

c) At equilibrium g should attain its minimum value wrt any of its variables, incl. |ψ| 
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 Type II eqn:  
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While the two first terms on the right hand side are dimensionless, the last term 
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has dimensions 1/m2. Accordingly cGl must have dimension m, and be a length.  

 

 

Consider equilibrium solution for the transition region 
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Interpreting the equation, we see that it expresses the difference in free energy density in a 

transition region from an n.s. region with energy g0 into a bulk s.c. region with g(T, |ψ|) = 

constant and |ψ|=|ψ|eq, just like around vortex lines in the type ii conductor.  

The characteristic length cGl must be the so-called coherence length.  

 

Temperature dependence: 

 

For the left hand side to balance the temperature dependence of the right side, 
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Problem 3 

 

 

a)  3d3 => S=3/2, L=2+1+0=3, J=|L-S|= 3/2, 
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1/2( )[ ( 1)]p g JLS J J    0.77 

 

Measurements indicate a p value ~ 5 times larger. Since we are dealing with moments from 

the 3d shell, it may be that the crystalline form is associated with so-called quenching of the 

orbital angular momentum. In that case: 

 

         S=3/2, L=0, J=|S= 3/2, 
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3.87p  , and 3.87/0.77 = 5.02, OK. 

 

 

b) The effective microscopic field may be expressed 
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With all N jS spins assumed equivalent and replaced by the thermal averaged value, 

j TS  , the mean field magnetisation of the system is  
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 Thus, the mean field approximation to the effective field can be expressed as 
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 which corresponds to the Weiss molecular field. 

 

  

For the paramagnetic response above TC, we assume weak magnetisation, and may 

therefore use the Curie-Brillouin relationship  
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 in the small argument limit BH k T   for the Brillouin function, i.e. 
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We substitute H with the Weiss field, and use the Curie-law to arrive at 
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Thus, 
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c) 
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Enter mean field and microscopic versions of Heff, with Hext =0  

 

Mean field: 
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Microscopic: 
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Difference: Microscopic version retains the full energy accountancy of spin-

wave/Magnon excitations, whereas the mean field version only characterise the net 

behaviour. The microscopic version also accounts for possible fluctuations in the spin 

wave (e.g. spin directions and interatomic distances/exchange intergrals), whereas the 

mean field version only relates to thermal equilibrium values…. 
 

 

 

 

  


