
Solutions Exam 2017 

 

Problem 1. 

 

 

a) In second-order transitions, P increases monotonically from 0 at the phase transition, where the 

phases of the ordered and disordered state are in equilibirum.   

 

=> Close to TC, G(P) is described mainly by the lower-order terms. 

 

g0(T): In the disordered phase,  P = 0 in absence of external electric fields. Thus, 

0 2( , ) ( ) ( ); CG T P g T G T T T   , i.e g0(T) represents the free energy of the disordered phase for 

temperatures above TC. It is a second order transition, so at TC both G1(T)= G2(T) and 
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, thus over a small temperature region below TC we may let 

0 0 2( ) ( ) G ( )C Cg T g T T  =G1(TC)  

 

g1(T), g3(T): A requirement to the ordered phase of second order phase transitions is G(P) = G(-

P), which may hold only if g1=g3=0. 

 

 

Thus, the free energy becomes 
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System in equilibrium with respect to P at any T: 
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g4(T): with the given form for g2(T),  restrictions are imposed on g4(T) from requiring the polar 

state to represent the free energy minimum below TC: 

  

2. T > TC:  

 

Here g0(T) = G2(T), which may be regarded more or less constant for temperatures close to TC. 

 

We find:  g2(T)= γ(T-TC) > 0  => g4 < 0 gives real solution, while g4 > 0 gives imaginary solution. 

 

 Energy minima: 
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       ii.  For the real non-zero solution, 
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Thus the free energy minimum is G(T, P=0)=g0(T)=G2(T), favouring a non-polar state. 

 



1. T < TC:  

 

 g2 = γ(T-TC) < 0  < 0  => g4 > 0 gives real solution, while g4 < 0 gives imaginary solution. 

 

 Energy minima: 
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      ii.  For the real non-zero solution, 
2

2
0 0

4

( )
( , ) ( ) ( )

4 ( )
C C

g T
G T P g T g T

g T
     

 

Thus, the polar state with 2

4

( )

( )

g T
P

g T
    gives energy minima below TC, and accordingly g4 

must be restricted such that 4( ) 0g T   for all T < TC.  

  

 

As shown under points 1 and 2 above, G(T,P) in the Landau expansion form gives a satisfactory 

description of the free energy of the second-order para->ferroelectric phase transition, and defines 

the correct polar properties for the stable state above and below TC.  

 

b) With the external field present, the Gibbs free energy becomes 
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where the vectors can be replaced by scalars when the external field is considered to be aligned 

parallel or antiparallel with the ordering parameter. 

 

Comparing with the zero-field situation from a).  

System in thermal equilibrium at any temperature, 
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Thus, with a non-zero external field present, the equilibrium polarisation magnitudes associated 

with energy minimisation are solutions satisfying the third order eqn. above, and accordingly they 

change with the magnitude of the field. For temperatures above TC, and with a non-zero E, clearly 

the net polarisation attains non-zero values if the system has any dielectric response (ionic, 

orientation dependent, electronic). Normally, however, in ferroelectrics the paraelectric response 

above TC is weak, so that the P3 becomes negligible, resulting in a susceptibility of the Curie-

Weiss type, i.e. 
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.   As T< TC and into the ferroelectric domain, however, P may rise 

spontaneously to attain values well above 0, accommodating to the presence of an external field. 

The 3rd order term cannot be neglected, and the equilibrium polarisation must be found from 

solutions of the 3rd order eqn.  

 

 

 

For a linear system, the dielectric susceptibility  
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where PE is the equilibrium value of the order parameter in an external field Eext=E. 

 

 

 

 

When E=0, eqn (*) returns to the situation in a) for which we already found solutions.  
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c) The polarisation associated with ion displacements may be expressed i i i

i

P n q r   where the 

sum is taken over the individual ions that contribute. 

 

From figure 1 we find that nBa2+=8*1/8/V=1/a3=nTi4+ and from the text we are told that 

2 4Ba Ti
r r r       , so we have 
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Entering the polarisation values given, we find: (392 ) 0.03Å;   (300 ) 0.18År K r K      

 

 

We have identical shifts for the positive ions, and consider these to account for the full 

polarizability of BaTiO3.  
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Close to TC we may employ the susceptibilities from b), i.e.: 
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So, 
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Sketch 

 
 
αBTO(T) rises anomalously in the proximity of TC, and shows archetypical behaviour for a critical 

parameter in a second order transition.   In second order displacive transitions, the spontaneous 

polarisation caused by ion displacements at or about TC is related to a T.O. phonon softening via 

the LST relation. From the result it can be seen directly that the polarizability, and hence the static 

dielectric function, grows anomalously about TC, such that TC represents a critical point. From the 

LST relation this implies that 0
C

TO
T T



  from both sides, which allows for the lattice to polarise 

spontaneously at TC even without an external field present. As T moves away from the critical 

point, the T.O. phonon softening vanishes and the T.O. lattice restoring forces regain their 

strengths. 

 

Returning to the Classius Mosotti relation 



3 3 3

0 0 0

3

0

3

0

3

0

3

0

( ) ( ) ( )
(1 )

3 3 3

( )

1

( )2 ( ) 1
3

( )
1

3

( )
2 ( )

BTO BTO BTO

BTO

BTOc

BTO

BTO
c

T T T

a a a

T

a

TT T

a

T

a

T
T T

a

   


   



















   


  
 



 



 

 

From the previous solution we found
3

0( ) 3BTO CT a  , so from the measurement done 0.5 K into 

the ferroelectric phase region, we find  
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Problem 2 

a) From Maxwell, 0 0 ( )
D

B j M j
t
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, assuming no displacement currents 

or Amperian currents/magnetisation currents. 

 

Take the curl once more, and introduce the superconducting current density 
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The physical interpretation of λLis that it reflects the penetration depth of the magnetic 

field into the current-transporting media. In a superconductor the length is referred to as 

the London penetration depth and corresponds to a surface near region where the Meissner 

effect is only partial, and also the region in which the superconductive current is flowing. 

The equation for the superconductive current density is identical. 

 

 

b)  

 



 
 

 

From the London eqn., 
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plate. 

 

The external magnetic field is the same at both sides of the plate. Demanding continuity at the 

boundaries, 
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     Accordingly, 
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The magnetisation inside the plate: 
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Let δ << λl, so that | | / 2x    (even smaller) inside the plate/thin film, and expand the 

hyperbolic functions (2nd order is adequate when the arguments are small): 
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c) The magnetic field contribution to the free energy density is 
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So accordingly, 
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     The average magnetic contribution to F inside the film is: 
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For a bulk superconductor the critical field is defined by the magnetic field energy 

superseding the stabilisation energy of the superconductor. Thus, 
22

2

. . . .

0 0

1
(0) (0)

2 24

ac
b s c C s c

B
F F H F



  

 
     

 
  

 

where Bac is the critical field of the thin film. We find: 
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implying that the thin film stability to external fields is higher than for the bulk 

superconductor. 

 

 

For a 2D superconductor modelled as a very thin sheet, the minimum size required to form a 

superconducting region (=coherence length) may still be satisfied by cooper pairs separated in 

the yz-plane. Considering the current density, however, we may run into problems. This 

should also be given by the London eqn., but taking into account the direction of B inside the 

film, the current needs to reflect loops with one component along x, implying that x need to 

have a finite size for the current to run. 

  

 
3 a) Weak magnetisation in the paramagnetic phase, so we may apply Curies law:  
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    The magnetisation is given by 

 



A-site lattice:    ( )
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At  T = TN the system should undergo spontaneous magnetisation, even in the absence of external 

fields. Thus: 
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To find the paramagnetic susceptibility of the total system, first express the total magnetisation of 

the two connected sublattices: 
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Thus, 
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3 b) Below the transition temperature, the two sublattices spontaneously order into two 

antiparallel systems, MA = - MB, so 
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Accordingly we should use the Curie-Brillouin law, which gives us  
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The ½ prefactor enters since the N atoms are parted into two antiparallel spin systems. 

 

J=1/2: 
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To find the Neel-temperature, we select one of the two sublattice systems, and let T -> TN  

from below. At the second order transition temperature, and in the absence of external fields, 

the magnetisation of each subsystem will be weak, so 
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Low-T convergence: 
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A spin wave approach to the temperature dependence of M gives rise to the so-called Bloch 

T
3/2 

law, whereas the mean field approach suggests an exponential T-dependency. The Bloch 

T
3/2 

law has been found to fit well with low temperature experimental results. 

 

In reality neither will give an accurate description of the low temperature trend for the 

antiferromagnet. The mean field approach has its already mentioned deviating trend at low T 

for both spin systems, and the Bloch T
3/2

- law is derived for a single parallel spin system with 

n.n. exchange only, not two exchanging antiparallel systems. It is therefore likely that the 

antiferromagnet require a more complicated spin wave based model. 

 


