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Problem 1 - Plasmons

a) Long wavelength limit: k− > 0 => ε(~k, ω)− > ε(ω). Let the x-axis be parallel to the applied elec-
tric field, ~E = ~E0e

iωt. The displacement of a single electron caused by the field, with respect to a neutral
(equilibrium) position in x = 0 is given by:

m
d2x

dt2
= −eE0e

iωt

.
Thus, solutions should be on the form x = x0e

iωt, and from substitution into the e.o.m. above, one gets:

x0 =
eE0

mω2

The electron gas as a whole has a dipole moment per unit volume, or a polarisation, which by definition is:

P = −nex = − ne2

mω2
E

The (relative) dielectric response is then

ε =
D

ε0E
=
ε0E + P

ε0E
= 1− ne2

ε0m

1

ω2
= 1−

ω2
p

ω2

The ion core contribution illustrated in the figure, shows a relatively high value of εic at low frequencies,
falling off as ω increases, asymptotically approaching a constant value labled εic(∞) in the figure and text.
The latter reflects a so-called high-frequency dielectric constant. At low frequencies, (∼ IR), the dielectric
function reflects a coupling between the electric field and phonons (thermal vibrations of the ion cores at
ambient temperatures are in the IR-domain). As the frequency of the field is increased, we gradually loose
the E-field-phonon coupling, since the field ocsillations become too rapid to resonate with the phonons.
The asymptotic value εic(∞) reflects a correction to the vacuum permittivity due to the fact that the core
electrons (weakly) adapt to the incoming field oscillations.

For the frequency range relevant for plasmon exitations (ω > ωp), the total relative dielectric function for
the plasma becomes:

εplasma(ω) = εic(∞)− ω2
P

ω2
= εic(∞)(1−

ω̄2
p

ω2
),

where ω̄2
p =

ω2
p

εic(∞)

b) From the wave equation, with an electric field on the form ~E = ~E0e
i(~k·~r−ωt), we find:

−µ0ε0ε(ω,~k)ω2 ~E = −k2 ~E ⇒ ε(ω,~k)ω2 = c2k2

For frequencies less than ω̄2
p, ε becomes negative, and since ω2 is positive, k2 < 0, i.e. k = ik′ is imaginary.

For the spatial variation of the electric field inside the plasma, this implies E = E0e
iik′r = E0e

−k′r, i.e. an
exponential damping of the field amplitude. Since ω̄p typically lies in the UV-range or above, the critical
distance for damping should be of the order ∼ 3-400 nm or less.
It is also possible to address this directly through the complex refractive index, n = N + iκ =

√
ε, where

N represents the real refractive index, whereas the imaginary part reflects losses/absorption. n = v/c =
ω/(kc)⇒ k = ω/(c

√
ε), or in other words negative ε implies imaginary k and n, (i.e. absorption).
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Na has valency of 1, so in the metallic state each atom contributes with 1 electron to the free electron gas.
With two Na atoms per u.c., the number density of free electrons will be n = 2/a3 = 1.68 · 1028 m−3. Thus,

λ = 2πc
ω̄p

=
2π
√
εic(∞)me
e
√
nµ0

= 271 nm.

Problem 2 - Polarisation
a) The average value of p along the field direction is:

< p cos θ >=

∫
p cos θf(θ)dΩ∫

f(θ)dΩ

The ensembly of random dipole orientations with respect to the field can be represented by a spherical
sufrace with radius p (see fig). For any given orientation θ, there exists a continuum of possible alignments
of the component orthogonal to the field, represented by the circular ring shown in the figure by the half
dashed line in the horisontal plane. The relative size of this continuum is represented by the integrand
dΩ = 2πsinθdθ (see e.g. analogy with lecture notes for the Lorentz field).

E

θ
p

Hence,

< p cos θ >=

∫ π
0 p cos θ exp

(
pE cos θ
kBT

)
2π sin θdθ∫ π

0 exp
(
pE cos θ
kBT

)
2π sin θdθ

=
p
∫ π

0 cos θ exp (β cos θ) sin θdθ∫ π
0 exp (β cos θ) sin θdθ

=
p
∫ 1
−1 xe

βxdx∫ 1
−1 e

βxdx

=
p
[
β−2eβx(βx− 1)

]1
−1

[β−1eβx]
1
−1

=

p
β2

(
eβ(β − 1) + e−β(β + 1)

)
eβ−e−β

β

=
p

β

(
β
eβ + e−β

eβ − e−β
− eβ − e−β

eβ − e−β

)
=
p

β
(β cothβ − 1) ,

with β = pE
kBT

.

Thus the total polarisation becomes:

P =
N < p cos θ >

V
=
nkBT

E

(
pE

kBT
coth

pE

kBT
− 1

)
.

For weak fields, i.e. E << kBT ⇒ β << 1, cothβ = 1
β + β

3 −
β3

45 + ... ' kBT
pE + pE

3kBT
. The orientational

polarisability per dipole becomes

α =
P

En
' nkBT

nE2

(
pE

kBT

[
kBT

pE
+

pE

3kBT

]
− 1

)
=
kBT

E2

(
1 +

p2E2

3(kBT )2
− 1

)
=

p2

3kBT
∝ T−1
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b) Sketch:

At low frequencies, i.e. ω << 1/τ , the dipoles will reorient constantly with the field alterations, and ac-
cordingly the real part of the dielectric response function will be relatively high. As ω → 1/τ , however,
the response of the oscillating dipoles will be reduced/damped due to an increasing loss to the characteris-
tic “friction”, or dipole-molecule interactions, and accordingly ε2 should rise, while ε1 falls off. The exact
frequency ω = 1/τ represents an extremum (resonance) in terms of heat dissipation into the system, and
accordingly ε2 should reach its maximum. At frequencies ω > 1/τ , the frictional loss fades off again, but at
the same time the ability for the dipoles to flip with the increasing field oscillation freqeuncies is reduced,
and the real part of the dielectric function will approach a constant high frequency value.

Problem 3 - Superconductivity

a) Bulk s.c. of type I: No fields or gradients (Meissner effect), i.e ~A = 0, ψ(~r) = ψ = constant. We minimize
the free energy function with respect to |ψ|2 = ncp, to find the equilibrium concentration:

∂fsc
∂ncp

= γ(T − Tc) + β(T )ncp = 0⇒ (ncp)eq = γ(Tc − T )/β,

i.e. (ncp)eq > 0 when T < Tc and β > 0.

The critical field is defined by the stabilisation energy of the superconductive state with respect to the
normal state, where the energy density of the critical field should correspond to the energy difference be-
tween the two states, i.e:

µ0

2
H2
c (T ) = fn(T )−fsc(T, ψ) = γ(Tc−T )(ncp)eq−

1

2
β(T )(ncp)

2
eq =

γ2(Tc − T )2

β
−γ

2(Tc − T )2

2β
=
γ2(Tc − T )2

2β

⇒ Hc(T ) =
γ(Tc − T )√

µ0β

b) We start with the cooper pair current density:

~jcp = − 2e

4me
[ψ?ih̄∇ψ + ψ(ih̄∇ψ)?]− 4e2

2me

~Aψ?ψ = − ih̄2e

4me
[ψ?∇ψ − ψ∇ψ?]− 4e2

2me

~Aψ?ψ = −ncph̄e
m
∇θ(~r)−ncp2e

2

m
~A.

For a type I superconductor in equilibrium (bulk), no gradients should exist, so ∇θ(~r) = 0, and ~jcp re-
duces to

~jcp = −ncp2e
2

m
~A.
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Maxwells relations:

∇× ~B = µ0(∇× ~H +∇× ~M) = µ0
~j + µ0

∂ ~D

∂t
= µ0

~j

(assuming no Amperian and no displacement currents).
Substituting with ~jcp from the expression derived above, gives:

∇× ~B =
2e2ncpµ0

me

~A

We take the curl on both sides to arrive at:

∇×∇× ~B = ∇ ·
(
∇ · ~B

)
−∇2 ~B = −∇2 ~B = −2e2ncpµ0

me
∇× ~A = − 2e2ncp

meε0c2
~B

.

Thus, ∇2 ~B = ~B/λL(T )2, with λL(T ) =
√

meε0c2β
2e2γ(Tc−T )

, where (ncp)eq from a) has been introduced.

λL is the so-called London penetration depth, and describes the depth (from the sc surface) where magnetic
field penetration is partial, which also coincides with the skin-depth in which the super conductive current
may flow. It represents a region where the Meissner effect can be said to be only partial.

c) In the type II superconductor transition regions we assume no fields, but a partial condensation of Cooper
pairs, ncp(r). Minimation of the free energy density against the order parameter gives:

∂fsc
∂ψ?(r)

= α(T )ψ(r) + βncp(r)ψ(r)− h̄2

4me

∂ψ(r)

∂r
= 0

⇒ − h̄2

4me

∂ψ(r)

∂r
= − (α(T ) + βncp(r))ψ(r)

We divide both sides by α(T ) = −β(ncp)eq, i.e. the bulk solution deep in the sc region(see a)), and obtain:

− h̄2

4meγ(T − Tc)
∂ψ(r)

∂r
=

(
ncp(r)

(ncp)eq
− 1

)
ψ(r)

The equation represents a modulation of the order parameter ψ(r) as one enters into the transition region.

From dimensional analysis it is evident that h̄2

4meγ(Tc−T ) must represent a squared length which may be taken
as the critical length over which the modulation extends, i.e. the so-called coherence length

ξ(T ) =
h̄

2
√
meγ(Tc − T )

Problem 4 - Magnetism

a) Gd3+: 4f75s2p6, which leaves 7 electrons in the 4f shell, i.e. half-filled ⇒ S = 7/2, L = 3 + 2 +
1 + 0− 1− 2− 3 = 0, J = S = 7/2.
V2+: 3d2. 2 electrons in 3d → S = 1, L = 2 + 1 = 3, J = |L− S| = 2.
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b) Weak fields, µ0µbg(JLS)JH << kBT , gives x << 1 and coth(x) ' 1/x + x/3. Thus, the Brillouin
function simplifies to:

BJ(x) ' 2J + 1

2J

(
2J

2J + 1

1

x
+

2J + 1

2J

x

3

)
− 1

2J

(
2J

x
+

x

6J

)
=

x

12J2
(4J2 + 4J) =

J + 1

3J
x

Employing the Curie-Brillouin law gives:

M =
nµBg(JLS)J(J + 1)µBg(JLS)Jµ0H

3JkBT
=
nµ2

Bg(JLS)2J(J + 1)µ0H

3kBT
=
np2µ2

Bµ0H

3kBT
,

and the paramagnetic suceptibility becomes

χ =
∂M

∂H
=
np2µ2

Bµ0

3kBT
=
C

T
,

i.e. C =
np2µ2Bµ0

3kB
.

For solids of the two ions from a), and with the given densities, we find:

Gd3+: n = 2.62 · 1028m−3, J = S = 7/2, g(JLS) = 3
2 + S(S+1)−0

2S(S+1) = 2, p = 2
√

7/2 · 9/2 =
√

63⇒ C ' 4.31 K

V2+: n = 3.59 · 1028m−3. Here, we should take into account L-quenching in the solid state, thus: J = S =
1, L = 0, g(JLS) = 2, p = 2

√
2 =
√

8⇒ C ' 0.75 K

c) Below Tc: Weiss molecular mean-field direct exchange, Heff = Hext +λM employed with Curie-Brillouin
law, directly gives the magentisation in the ferromagnetic phase as

M = ng(JLS)µBJBJ

(
g(JLS)Jµ0µBHeff

kBT

)
= 7nµBB7/2

(
7µ0µB(Hext + λM)

kBT

)

Above Tc: Applying the Weiss-model, and assuming weak magentisation so that Curies law applies, we find

χ =
∂M

∂H
' M

H
=

M

Hext + λM
=
C

T
⇒MT = CHext + CλM ⇒M =

C

T − Cλ
Hext

From which

χ =
M

Heff
' M

Hext
=

C

T − Cλ
=

C

T − Tc
,

i.e. Curie-Weiss law.

Thus, the magnetisation becomes:

M =
C

T − Tc
H

Since the Gd3+ solid has a paramagnetic-ferromagnetic phase transition at 289 K, the ratio χ(300K)/χ(290K) =
1
11 , and from the CW-law we also find: λ = TC/C = 289/4.31 ' 67

d) With J = S = 1, JZ = SZ = 1, 0,−1. The energy levels of these three spin states are:

E1 = 2µBB
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E0 = 0

E−1 = −2µBB

From the Boltzman statistics, we find the relative populations of the states to be

N1

N
=

e−2µBB/kBT

e−2µBB/kBT + e2µBB/kBT + 1

N0

N
=

1

e−2µBB/kBT + e2µBB/kBT + 1

N1

N
=

e2µBB/kBT

e−2µBB/kBT + e2µBB/kBT + 1

The magentisation of the system

M =
J∑
−J

MJz(B)NJZ =
µB
V

(2N−1 − 2N1 + 0N0) =

(
2
e2µBB/kBT

N
− 2

e−2µBB/kBT

N

)
nµB

=
2
(
e2µBB/kBT − e−2µBB/kBT

)
e2µBB/kBT + e−2µBB/kBT + 1

nµB

=
4 sinh

(
2µBB
kBT

)
2 cosh

(
2µBB
kBT

)
+ 1

nµB

The paramagnetic nature of the system is not really altered by the normal-superconductive transition, yet
the paramagnetic response vanishes at the transition temperature as the external magnetic field may not
any more penetrate into the material, due to the Meissner effect. What happens at the transition is that
(the cooper pairs formed in) the free electron gas suddenly starts setting up diamagnetically driven surface
currents to block the field penetration out of the material. As the external field is prevented from penetrating
into the material, it will be as if there is no field present, i.e. the moments return to a random orientation.
For the sake of completeness, please note that a weak contribution from the normal state free electrons to
the paramagnetic response has been neglected in the model for M calculated above.
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