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Problem 1: Various

(a) Define the following length scales that are relevant in discussing transport in nano-scale

systems: 1) Fermi wavelength λF , 2) elastic mean free path le, and 3) phase coherence

length lφ.

(b) We consider a 1D channel and define a scattering matrix consisting of reflection r (r′)

and transmission amplitudes t (t′) for electrons coming from the left (right) lead as

S =

 r t′

t r′

 . (1)

Imagine that we have two scatterers in series with scattering matrices S1 and S2,

respectively.

Make the assumption that there is incoherent scattering in the 1D channel so scattering

by the two potentials is incoherent. What is the total transmission probability through

the system in terms of the elements of the scattering matrices S1 and S2 in this case?

Problem 2: The Landauer-Büttiker formula

The Landauer-Büttiker formula for the relation between currents Ii and voltages Vj in a

many-terminal system reads

Ii =
∑
j

[GjiVi −GijVj ] , (2)

where the sum is over the terminal indices j = 1, 2, 3, . . . N and i = 1, 2, 3 etc., N is the

number of terminals, and Gij are elements of a conductance matrix.

(a) Prove that
∑
j Gji =

∑
j Gij .

(b) In the remainder of the problems, we will assume that Gij = Gji. Which physical

condition must be fulfilled to justify this assumption?

(c) Consider a three-terminal device, where a current I = I1 = −I2 passes from terminal

1 at voltage V1 to terminal 2 at voltage V2. In response to the current I, there is a

voltage V3 at the terminal 3 where there is no current, I3 = 0.

Consider first (and here only) that the conductance element G23 is much bigger than

all the other elements of the conductance matrix. In this limit, what is the voltage

difference V3 − V2 ?
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(d) Compute the potential difference V3 − V2 as a function of the current I and the con-

ductance matrix Gij of the system.

Problem 3: The Quantum Hall effect

(a) Give a physical explanation of what Landau levels are.

(b) Give a physical explanation of what semi-classical skipping orbits is as well as what

their quantum mechanical analogue are.

Problem 4: Spintronics

(a) Explain what the following spintronics phenomena are: i) giant magnetoresistance

(GMR) and 2) spin-transfer torques.

(b) We consider the Pauli equation for spin 1/2 electrons in a one-dimensional channel along

the x-direction and disregard the spin-orbit interaction. We assume that there is a weak

magnetic field B applied along the z-direction confined to a length −L/2 < x < L/2

and include its effect on the spin degrees of freedom only. The Hamiltonian is then

H =

 −
h̄2

2m
d2

dx2
I + geh̄

2mBσz ;−L/2 < x < L/2

− h̄2

2m
d2

dx2
I ; |x| ≥ L/2

, (3)

where the unit matrix I and the Pauli-matrix σz are defined as

I =

 1 0

0 1

 (4)

and

σz =

 1 0

0 −1

 . (5)

We may define a Zeeman energy

EZ =
geh̄

2m
B (6)

and assume that EZ > 0 throughout this exam.

Consider an electron with energy 0 < E < EZ . Assume (in this question only) that the

system is much longer than any other possible length scale, L → ∞. Argue, without

explicit calculations, what the reflection probability R↑ is for an incoming spin-up

electron. For your information, the spin-up electron sees a larger potential barrier than

the spin-down electron in the barrier region −L/2 < x < L/2.
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(c) Consider still an electron with energy 0 < E < EZ , but the barrier region has now a

finite length L. Compute the transmission probability for the passage of an electron

through the one-dimensional channel for both a spin-up state and a spin-down state.


