
Slides

Module 4.1: Euler’s Method

A NumFys Module

http://www.numfys.net

Fall 2012

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.1 Matlab Module

First Step:
Save the corresponding Matlab codes onto your computer and
open them in Matlab.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.2 Euler’s Method

Question:
How can we solve a first-order differential equation of the form

d
dt

x(t) = g(x(t), t), (1)

with the initial condition x(t0) = x0, if we cannot solve it
analytically?

Example 1:
We want to solve the ordinary differential equation (ODE)

d
dt

x(t) = cos(x(t)) + sin(t) (2)

with x(0) = 0, i.e. we need to find the right function x(t) that
fulfills the ODE and the initial condition (IC).

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.3 Euler’s Method

Given the initial condition x(0) = 0, we want to know x(t) for
t > 0. We will now find an approximate numerical solution of
the exact solution by computing the values of the function only
at discrete values of t .

To do so, we define a discrete set of t-values, called grid points,
by

tn = t0 + n ∗ h with n = 0,1,2,3, ...,N. (3)

The distance between two adjacent grid points is h. The largest
value is tN = t0 + N ∗ h. Depending on the problem, tN might be
given and h is then determined by how many grid points N we
choose

h =
tN − t0
N − 1

. (4)

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.4 Euler’s Method

The key is now to approximate the derivative of x(t) at a point tn
by

dx
dt t=tn

≈ x(tn+1)− x(tn)
h

, h > 0. (5)

We know that this relation is exact in the limit h→ 0, since x(t)
is differentiable according to equation (2). For h > 0, however,
equation (5) is only an approximation that takes into account
the current value of x(t) and the value at the next (forward) grid
point. Hence, this method is called a forward difference
approximation.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.5 Euler’s Method

In equation (5), we approximate the slope of the tangent line at
tn ("the derivative") by the slope of the chord that connects the
point (tn, x(tn)) with the point (tn+1, x(tn+1)). This is illustrated
in this figure: blue - graph; dotted - tangent line; green - chord.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.6 Euler’s Method

Substituting the approximation (5) into (2), we obtain
x(tn+1)− x(tn)

h
≈ cos(x(tn)) + sin(tn). (6)

Rearranging the equation, using the notation xn = x(tn) and
writing this as an equality (rather than an approximation) yields

xn+1 = xn + h [cos(xn) + sin(tn)] . (7)

This describes an iterative method to compute the values of the
function successively at all grid points tn (with tn > 0), starting
at t0 = 0 and x0 = 0 in our case. This is called Euler’s method.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.7 Euler’s Method

For example, the value of x at the next grid point, t1 = h, after
the starting point is

x1 = x0 + h [cos(x0) + sin(t0)] (8)
= 0 + h [cos(0) + sin(0)] (9)
= h. (10)

Similarly, we find at t2 = 2h
x2 = x1 + h [cos(x1) + sin(t1)] (11)

= h + h [cos(h) + sin(h)] . (12)

It is now a matter of what value to choose for h.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.8 Euler’s Method

In the corresponding Matlab code, we choose h = 0.001 and
N = 10000, and so tN = 10. Here is a plot of x(t), where the
discrete points have been connected by straight lines.

Run the code yourself!
What happens to xN when we decrease h by a factor of 10?
(Remember to increase N simultaneously by a factor of 10 so
as to obtain the same value for tN .)

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.9 Euler’s Method

Accuracy:
We see that the value of xN depends on the step size h. In
theory, a higher accuracy of the numerical solution in
comparison to the exact solution can be achieved by
decreasing h since our approximation of the derivative d

dt x(t)
becomes more accurate.

However, we cannot decrease h indefinitely since, eventually,
we are hitting the limits set by the machine precision. Also,
lowering h requires more steps and, hence, more
computational time.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.10 Euler’s Method

For Euler’s method, it turns out that the global error (error at a
given t) is proportional to the step size h while the local
error (error per step) is proportional to h2. This is called a
first-order method.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.11 Euler’s Method

We can now summarize Euler’s method.

Given the ODE

d
dt

x(t) = g(x(t), t) with x(t0) = x0, (13)

we can approximate the solution numerically in the following
way:

1 Choose a step size h.
2 Define grid points: tn = t0 + n ∗ h with n = 0,1,2,3, ...,N.
3 Compute iteratively the values of the function at these grid

points: xn+1 = xn + h ∗ g(xn, tn). Start with n = 0.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.12 Euler’s Method

Instability:
Apart from its fairly poor accuracy, the main problem with
Euler’s method is that it can be unstable, i.e. the numerical
solution can start to deviate from the exact solution in dramatic
ways. Usually, this happens when the numerical solution grows
large in magnitude while the exact solution remains small.

A popular example to demonstrate this feature is the ODE
dx
dt

= −x with x(0) = 1. (14)

The exact solution is simply x(t) = e−t . It fulfills the ODE and
the initial condition.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.13 Euler’s Method

On the other hand, our Euler method reads

xn+1 = xn + h ∗ (−xn) = (1− h)xn. (15)

Clearly, if h > 1, x(tn) will oscillate between negative and
positive numbers and grow without bounds in magnitude as tn
increases. We know that this is incorrect since we know the
exact solution in this case.

On the other hand, when 0 < h < 1, the numerical solution
approaches zero as tn increases, reflecting the behavior of the
exact solution.

Therefore, we need to make sure that the step size of the Euler
method is sufficiently small so as to avoid such instabilities.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.14 Euler’s Method

Second-order ODEs:
We will now demonstrate how Euler’s method can be applied to
second-order ODEs.

In physics, we often need to solve Newton’s law which relates
the change in momentum of an object to the forces acting upon
it. Assuming constant mass, it usually has the form

m
d2

dt2 x(t) = F (v(t), x(t), t), (16)

where we restrict our analysis to one dimension. (The following
ideas can be extended to two and three dimensions in a
straightforward manner.)

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.15 Euler’s Method

Dividing by the mass, we find

d2

dt2 x(t) = G(v(t), x(t), t), (17)

with G(v , x , t) := F (v , x , t)/m. We can re-write this
second-order ODE as two coupled, first-order ODEs. By
definition, we have v(t) = d

dt x(t). Hence, we obtain

dx
dt

= v , (18)

dv
dt

= G(v , x , t). (19)

Now, we only need to specify the initial conditions x0 = x(t0)
and v0 = v(t0) to have a well-defined problem.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.16 Euler’s Method

Using the same discretization of time as previously, we can
apply the ideas of Euler’s method also to this first-order system.
It yields

xn+1 = xn + h ∗ vn, (20)
vn+1 = vn + h ∗G(vn, xn, tn), (21)

where (at n = 0) x0 and v0 are the initial conditions at t = t0.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.17 Euler’s Method

Example 2:
Let us consider a particle of mass m that is in free fall towards
the center of a planet of mass M. Let us assume that the
atmosphere exerts a force

Fdrag = Dv2 (22)

onto the particle which is proportional to the square of the
velocity. Here, D is the drag coefficient. Note that the x-axis is
pointing away from the planet. Hence, we only consider v ≤ 0.

The particle motion is described by the following governing
equation (G: gravitational constant)

m
d2x
dt2 = Dv2 − GmM

x2 . (23)

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.18 Euler’s Method

Dividing each side by m gives

d2x
dt2 =

D
m

v2 − GM
x2 . (24)

Following our recipe above, we re-cast this as two first-order
ODEs

dx
dt

= v , (25)

dv
dt

=
D
m

v2 − GM
x2 . (26)

We choose D = 0.0025 kg m−1, m = 1 kg and M = MEarth, i.e.
the mass of the Earth.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.19 Euler’s Method

Accordingly, our algorithm now reads
xn+1 = xn + h ∗ vn, (27)

vn+1 = vn + h ∗
[

D
m

v2
n −

GM
x2

n

]
. (28)

Let us specify the following initial conditions and step size:
t0 = 0, x(t0) = x0 = 7000.0 km, v(t0) = v0 = 0 m/s, h = 0.001 s.

(29)
We could now iterate the above equations until the particle hits
the ground, i.e. until x = REarth, where REarth is the radius of
Earth. This occurs in finite time both in reality and in our code.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.20 Euler’s Method

Moreover, the particle would also reach x = 0 in finite time,
given the above equations, while the speed grows to infinity.
However, the code would crash well before x approaches zero
due to the speed reaching very large values.

Note: The governing equation actually changes when |x | < R.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.21 Euler’s Method

Therefore, we need to be careful with our numerical solution
procedure. This goes to show that it is often very useful to
understand the physical problem under consideration
when solving its governing equations numerically.

Let us integrate until tN = 100 s, equivalent to N = 105 time
steps. As it turns out, the particle does not reach the ground by
t = tN .

Again, run the corresponding Matlab code yourself!
What do you observe?
What happens when you choose x0 = 10000.0 km as your
initial height?

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

Slides

p.22 Euler’s Method

Summary:
We have learned how to use Euler’s method to solve first-order
and second-order ODEs numerically. It is the simplest method
in this context and very easy to implement.
However:

1 There are more precise methods for solving ODEs.
2 There are more stable methods for solving ODEs.

Notwithstanding these issues, Euler’s method is often useful:
it is easy to use (the coding is less error prone); it can provide a
helpful first impression of the solution; modern-day computer
power makes computational expense less of an issue.
Simply put, sometimes it is sufficient.

A NumFys Module http://www.numfys.net

Module 4.1: Euler’s Method

	Slides

