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A mechanical model that exhibits first- and second-order phase transitions is analyzed. The possible
configurations are found first by using Newtonian mechanics and second by determining the
minimum of the effective potential energy taken from the Lagrangian. A comparison is made
between the effective potential energy method and the Landau theory of phase transitions. Phase
diagrams are obtained for the mechanical system and are compared with those of a ferromagnet.
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L. INTRODUCTION

Mechanical models are very useful in explaining more ab-
stract physical concepts. For example, several papers have
appeared in this journal in which a mechanical system is
used to exglain spontaneously broken symmetry' and phase
transitions.”™ In this paper a previous model’ that was used
to demonstrate spontaneously broken symmetry and second-
order phase transitions is extended to include first-order
phase transitions.

We find a close analogy between the mechanical system
introduced here and a ferromagnetic material in an external
magnetic field. The potential energy of the mechanical sys-
tem resembles the free energy of the ferromagnet. Also, the
phase diagrams are quite similar. So, by considering the pos-
sible configurations of this mechanical system we can gain
insight into the phases and phase transitions of a magnetic
system.

In Sec. II the model is introduced and its solution is de-
scribed in terms of Newtonian mechanics. There it is shown
that a continuous or a discontinuous change in the position
can take place, depending on the values of the parameters. In
Sec. Il the Lagrangian mechanical solution to the model is
discussed. Rather than solving the equations of motion, we
analyze the effective potential energy to find the possible
equilibrium states of the system. In addition, the analogy
between the possible states of the present model and phase
transitions described by Landau theory is made. Section IV
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contains a comparison of the phase diagrams of the mechani-
cal model and those of a ferromagnet. Finally, Sec. V in-
cludes some conclusions and a discussion.

II. THE MODEL AND ITS ANALYSIS USING
NEWTONIAN MECHANICS

The mechanical model to be analyzed!® is shown in Fig.
1. Mass m is free to move without friction on the loop of
radius R. The loop is attached at the top to a support that is
free to rotate about a vertical axis. In the general case the
loop is attached so that the axis of rotation is parallel to the
vertical diameter of the loop and is offset a distance A. The
position of the mass on the loop is given by the angle 6. The
forces acting on the mass are mg, the force of gravity, and N,
the normal force due to the loop. When the support, and
therefore the loop, is rotating, the mass has centripetal accel-
eration due to the horizontal component of the normal force.

In order to avoid ambiguity in the definitions of positive
and negative @ and A, we define one end of the support as
positive and the other end as negative (see Fig. 1). Then the
displacement A is positive if the loop shifts toward the posi-
tive end of the support. Likewise, 6 is positive if the mass
swings toward the positive end of the support.

Figure 2 shows the forces applied to mass m. When the
loop support is rotating, the net vertical force must be zero,
since there is no vertical acceleration. The net force in the
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Fig. 1. A schematic of the mechanical model. The end marked (+) defines
the positive direction for both A and 6.

horizontal direction produces the centripetal acceleration.
Then the Newtonian equations of motion, F,,;=ma, become

vertical component: N cos ~mg=ma,=0, 1)
horizontal component: N sin =ma,=mw?*(R sin 6
+A). (2)

By eliminating N in (1) and (2), the resulting equation relat-
ing # and A is found to be

mg sin #=mw?*(R sin §+A)cos 6. (&)
Defining @=A/R and B=w’R/g, we get
sin 8= B(sin 6+ a)cos 6. 4

When (4) is satisfied we say, for convenience, that the sys-
tem is ‘‘in equilibrium.”” This is not strictly true, since the
mass has centripetal acceleration toward the axis of
rotation.'” However, in a reference frame rotating with the
loop the object will be stationary. So, we will use the term
‘‘equilibrium angle’’ to describe the possible positions of the
mass.

We now look at solutions of (4) for different values of the
parameters a and S.

4 mg

Fig. 2. A force diagram for the mass on the rotating loop: a is the centripetal
acceleration.
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A. a=0, B changes

We first consider the case, as discussed in Refs. 1 and 5,
when a=0, or when the axis of rotation coincides with the
diameter of the loop. In this case (4) becomes

sin #= B sin  cos 6. (5)
Then the equilibrium angle is
8p=*cos (1/8)=*cos™!(g/w’R). (6)

If g/ w’R>1, or B<1, then (6) has no real solution for 6.
However, (5) also allows the trivial solution sin §=0 or 8=0.
So, for B=1 or w=(g/R)"?, the equilibrium angle is given
by (6) and for 8<1, or w<(g/R)"?, the equilibrium angle is
00=0.

As B increases from zero, the mass will remain at 6=0.
This is the state with lowest energy and the system is in
stable equilibrium. When B exceeds 1, the system is no
longer in the state with lowest energy. Since a small force
will cause the mass to move into the state with lowest en-
ergy, the system is in unstable equilibrium. The new stable
equilibrium position is at 6, given by (6). As B increases
further the mass will continue to move up the loop, with 8
varying continuously with 8. Note that the mass can move
initially in either the positive or negative @ direction.

B. Fixed a#0, B changes

If B=0, then 6=0 and the mass m starts out at rest at a
distance A =aR from the axis of rotation. Taking « to be
positive, if we increase 8 the equilibrium angle will increase
continuously from 0 to a positive value. Physically we ex-
pect the mass to swing out away from the axis of rotation for
nonzero a when the system is rotating. This can also be seen
from an analysis of the equilibrium condition in (4), which
can be rewritten as

tan 6
" a+sin 0° @
We can determine how @ changes with B by differentiation
of (7). Then

dB (a+sin #)sec? —tan 6 cos 0

a6~ (a+sin 6)? ®)
or

do (a+sin 6)? )

- atsnig b ©)

If =0, then 6=0 for any a. The mass hangs straight down
if the system is not rotating. As B increases, since for =0,
df0/dB=a, then @ increases initially in the direction of .
From (9) it is clear that if & and 8 are in the same direction,
then d6/d8>0. So, as the system rotates faster, the angle 8
increases.

C. Fixed B+0, a changes

Suppose B#0 and a=0. What happens when « increases
in the positive direction? We can see how 8 changes with &
by solving (4) for a:

1
a= E tan @—sin 6. (10)

Differentiation with respect to 8 gives

G. Fletcher 75



da 1

I B sec” #—cos # (11)
or

de cos? 6

da” 1B=cos’ 6’ (12)
Clearly d 8/d a can be positive or negative. We now consider
two possibilities: 8<1 and 8>1.

1. <1

In this case, when a=0, #=0. (See Sec. Il A) Since 8<1,
1/8>1, and since cos® f=<1, we have 1/,3——cos3 6>0. Then,
from (12) we have d6/da>0. So, for a>0, 8 increases in
the positive direction and for a<0, @ increases in the nega-
tive direction. This is true for all 0<<é=%/2, so 8 will con-
tinue to increase as « increases. This is essentially the same
as the situation in Sec. II B. As a increases, the mass swings
out further.

2. B>1

In this case it is possible for the denominator in (12) to be
zero. This will happen when

6=6.=*+cos™ 1(1/8'3). (13)
This gives the following possibilities:

do (<0 if |6]<8,
da |>0 if [6]>86,

With B>1 and o=0, suppose €@ starts out at
+6,=-+cos”(1/8)>6, . Then, as a increases in the positive
direction, d §/d >0 and @ increases in the positive direction.

If 6 starts out at +6, and « becomes negative, then 6
decreases and eventually reaches 6,, where d8/da goes to
infinity. Physically this can be described as follows. As «
becomes negative, the axis of rotation moves toward the
mass and the centripetal acceleration of the mass decreases.
A point is reached where the component of the force of grav-
ity exceeds the amount necessary to produce, through the
normal force of the loop, the centripetal acceleration. The
mass moves toward the axis of rotation, thus decreasing the
centripetal acceleration, which causes the mass to ““fall’” fur-
ther toward the axis of rotation, eventually moving to the
negative side of the loop. Now the mass is ‘‘on the other
side’” of the axis of rotation and it will continue to move
until equilibrium is reached at a negative 6. This is a discon-
tinuous change from +6, to a negative @ between — 6, and
—/2.

Another way of describing the above situation is as fol-
lows. The range of values of 6 from +6, to + 6, correspond
to states of metastable equilibrium, since there are other
stable states at negative values of 6 with lower energy. For
6=6, the mass is still on the positive side of the axis of
rotation. As a becomes more negative, the mass must jump
to a negative @ between — 6, and — 71/2, corresponding to a
position of stable equilibrium.

The value a, at which the discontinuous change in 6 takes
place can be found as follows. Equation (10) relates « to ¢
and it can be used to find a, in terms of 6. Then,

(14)

(1—cos? 6,)2,

(15)

tan ,—sin 0c=(m—l)
: [4

ac:ﬁ

76 Am. J. Phys., Vol. 65, No. 1, January 1997

Now, from (13), 6,=cos ~'(87'?), so
a,= _(1_3—2/3)3/2‘ (16)

The preceding analysis also applies to the case where 6
starts out at — 6,. Then, if « increases in the negative direc-
tion, 6 will increase in the negative direction. If a becomes
positive, there will be a discontinuous change from — 6, to a
positive 6 between + 6, and +7/2 at a,=+(1— ,3‘2/3)36/2.

III. THE LAGRANGIAN, THE EFFECTIVE
POTENTIAL ENERGY, AND PHASE TRANSITIONS

In this section we set up the Lagrangian for the model
shown in Fig. 1. The potential energy is then used to describe
the possible equilibrium states of the system and a compari-
son of this description with the Landau theory of phase tran-
sitions is made.

A. The Lagrangian

The Lagrangian is defined as £=T—V, where T is the
total kinetic energy and V is the total potential energy.'® The
total kinetic energy is the sum of the kinetic energies of
motion around the axis of rotation and along the loop, since
the two velocities are perpendicular. Then,

T=Ty+T,=imR*60*+ imw*(R sin 6+A)2. 17)

The only potential energy is gravitational, so choosing the
center of the loop as the zero,

V=—mgR cos 6, (18)
and the Lagrangian is
%=1mR?6*+ imw?(R sin 6+A)2+mgR cos 6. (19)

Equation (19) can be written as £=T y— U, where U is an
effective potential energy that includes the effects of gravity
and of the rotation of the system. Usingz the definitions intro-
duced previously, a=A/R and B=w"R/g, we define the
scaled effective potential energy as

Us=U/mgR=—cos §— 3B(sin 8+ a)?. (20)

The Lagrangian can then be used to obtain the equations of
motion. However, since we are only interested in the equi-
librium states, we can analyze Uy for possible solutions.
Equilibrium states correspond to states of minimum potential
energy. To find these states we will consider the different
possible cases for different values of the parameters « and S.
First, however, we briefly describe the Landau theory of
phase transitions.

B. Phase transitions and Landau theory

The Landau theory”‘13 is fairly successful in describing

systems near a second-order phase transition. In this theory
the phase of a system is characterized by an order parameter.
This is a measurable quantity which is typically zero in the
disordered, or high-temperature phase and is nonzero in the
ordered, or low-temperature phase. A common example is
the ferromagnet. The magnetization of a ferromagnet at a
temperature above the critical temperature T, is zero if there
is no external magnetic field present. However, as the tem-
perature is lowered to T<T,, the magnetization becomes
nonzero even in the absence of an external magnetic field.
Thus the magnetization can be used as an order parameter to
distinguish the high- and low-temperature phases in a ferro-
magnet.
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Fig. 3. Effective potential energy curves for loop rotating about its vertical
diameter. Curves are for angular frequency below and above the critical
value.

When one of the parameters in a system changes, a phase
transition may take place. For example, changing the tem-
perature of a ferromagnet can cause the magnetization to
become nonzero. The magnetization can change smoothly or
abruptly and the phase transition is classified as either second
order (continuous) or first order (discontinuous), respec-
tively. Thus, in a second-order phase transition, the order
parameter changes continuously, while in a first-order tran-
sition, the order parameter changes discontinuously.

To describe phase transitions, Landau considered an ex-
pansion of the free energy .% of a system in the order param-
eter ¢. The general form of the expansion can be written!! ™'

.?=a1¢+a2¢2+a3¢3+a4¢4+-" 5 (21)

where a constant a, has been dropped. We have assumed
that the order parameter is constant so that terms including
gradients of ¢ have been neglected. The a;’s will, in general,
be functions of temperature T. The equilibrium state is then
determined by the requirement that d%7/9¢=0. To determine
the stability of the equilibrium state, the second derivative of
Z must be evaluated. If #.% /:9¢2 is negative, then the state is
unstable. If -%73¢? is positive, then the state is either stable
or metastable, with the stable state having the lower energy.
This theory can also be used to describe first-order transi-
tions in the presence of an external field.

The mechanical model considered here can be described
by analogy with phase transitions. The position of the mass
on the loop, denoted by 6, can be used as an order parameter.
Likewise, the angular frequency of rotation w, or equiva-
lently B, plays the role of temperature. The displacement of
the axis of rotation away from the diameter of the circle,
represented by a or a, is analogous to the external magnetic
field. Finally, the effective potential energy is similar to the
free energy. With these identifications, the possible equilib-
rium configurations of the mass on the loop can be described
in terms of phases of the system and the possibility of phase
transitions exists. We will henceforth use the term ‘tempera-
ture’’ to refer to either B or T and the term ‘field’’ for either
@ or the magnetic field B. “‘Energy’” will be used for U, or
% and “‘order parameter’’ will mean either # or the magne-
tization M.

The effective potential energy given by (20) can be ex-
panded about #=0 for small # and small a. Then,
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cies are plotted.
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+ é (B—1/4)6". (22)

This is similar to the Landau expansion with odd and even
powers of the order parameter 6 and with coefficients which
depend on the frequency B.

The possible states of the mechanical system can be deter-
mined by examining the energy and how it changes with
temperature and external field. A metastable or stable equi-
librium state corresponds to a local energy minimum, while a
stable equilibrium state corresponds also to a global energy
minimum. In the next three subsections we consider the pos-
sible equilibrium states for different combinations of the
temperature and the field.

C. Zero field, changing temperature

In this case the energy is given by
U= —cos 8— 388 sin® 6. (23)

This energy is plotted in Fig. 3 for 8<1 and g>1.

For the situation in which 8<1 the minimum of the en-
ergy is at §,=0. This is the equilibrium position of mass m.
This will be true for any B<1, which corresponds to
w<(g/R)".

When B>1, Fig. 3 shows that the minimum of the energy
is no longer at #=0. There are now minima at

6p=*cos !(1/8)=*cos™ !(g/w’R) (24)

and =0 is a local maximum. Therefore, the equilibrium
position of mass m when B>1 will be either + 6, or — 6.

This case was examined in Sec. Il A. It is analogous to a
second-order phase transition, since as 8 changes from <1 to
>1, the order parameter changes continuously from 6=0 to
0#0. In the Landau theory for a ferromagnet this corre-
sponds to an expansion in even powers of M:

y=a2M2+a4M4, (25)
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where a,=b(T—T_) with b a constant. When 7>T, a plot
of % vs M looks like the 8<1 curve in Fig. 3. When T<T,,
the plot resembles the 8>1 curve in Fig. 3. The magnetic
material has changed from nonmagnetic to magnetic, with M
either positive or negative. The small-angle expansion in
(22) with a=0 is

Us=—1+X1- )6+ (B~ 146", (26)
This has the same form as (25).

D. Nonzero field, changing temperature
In this case the effective potential energy is given by
U= —cos 68— 1B(sin 6+ a)>. (27)

This is plotted in Fig. 4 for >0 and =0, <1, and >1.
Note that the 8>1 curve has two minima. However, since
for low B the minimum is at positive 6, this will continue to
be true as B increases. The mass cannot be at #<0 in this
case. So, for fixed >0 and nonzero B, the mass will be at an
angle >0 and as f3 increases the order parameter 6 will
increase continuously.

The magnetic analog of this case corresponds to the pres-
ence of a fixed external magnetic field and a changing tem-
perature. As T decreases, the magnetization increases in the
direction of the external field and, as T passes through T,
there is no phase transition.

A plot of the free energy versus magnetization will re-
semble Fig. 4 for infinite temperature (8=0), T>T, (B<1),
and T<T, (8>1). The Landau expansion for this case would
be (25) with a linear term corresponding to the presence of
the magnetic field:

F=b(T-TIM*+a,M*~BM. (28)

For the mechanical model, the small angle expansion is
2 1 2, 1 3
Ug=—(1+Ba"2)—afo+3(1-5)0"+ 3 apt

+ 4 B-1/4) 6" (29)

This contains a linear term proportional to the displacement
a, similar to the magnetic case. U also contains a cubic
term, which would arise from nonlinear effects in the mag-
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netic case. Therefore, (28) has the same form as (29).

E. Nonzero temperature, changing field

We now consider fixed temperature and we let the field
change from zero to a positive value. To find the new equi-
librium positions of the mechanical system we analyze (27)
for the two cases, 8<1 and >1. We then compare the re-
sults with the magnetic system.

15/2'.1 a:o

~m/2 4
@ o i 2 B
M
MO . B=0
{
Mg |
® o ; T/ Te

Fig. 7. (a) Position—frequency phase diagram for mechanical system. (b)
Magnetization—temperature phase diagram for a ferromagnet.
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ferromagnet with T<T_ and with hysteresis.

1. B<1

This case is plotted in Fig. 5 for 8<1 and a=0, 0.5, and 2.
As a increases, the minimum shifts to larger positive values.
Therefore, as the loop moves further away from the axis of
rotation in the positive direction, the mass moves further up
the loop on the side where §>0.

For the magnetic system this corresponds to T>T, and B
changing from 0 to a positive value. The magnetization starts
at zero and increases with B and is parallel to B. The energy
varies with magnetization as U varies with 6 in Fig. 5.

2. p>1

This case is plotted in Fig. 6 for 8>1 and for three differ-
ent values of . The curve with a=0 is just the solution with
minima at * 6. Suppose the mass chooses —6,. Then, as a
becomes positive the minima shift and the minimum at posi-
tive @ has lower effective potential energy than the negative
6 minimum. Thus the minimum at negative 6 corresponds to
metastable equilibrium. The mass will remain at negative 6
until o reaches a critical value, a,, at which point the mini-
mum at negative 6 becomes a point of inflection and the
mass slides to the minimum at positive 6.

For the analogous magnetic system the temperature is be-
low T and the magnetization is nonzero and negative. If a
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magnetic field is now applied in the direction of M, the mag-
netization will increase. If a magnetic field is applied in the
direction opposite M, the magnetization will discontinuously
change from negative to positive, assuming no hysteresis
(see Sec. IV B). This is an example of a first-order phase
transition. The free energy versus magnetization graph will
resemble that in Fig. 6 with a#0.

IV. PHASE DIAGRAMS

In this section we continue the comparison of the me-
chanical system and magnetic system by looking at their
phase diagrams. In particular we look at order parameter—
temperature, order parameter—field, and field—temperature
diagrams.

A. Order parameter—temperature diagrams

Figure 7(a) shows the 6—pB phase diagram for the me-
chanical system with no displacement of the loop (a=0).
Then, for B<1, the mass is at §=0. As 3 passes through
B=1, the mass begins to move up the loop. Note that it can
go in either the positive or negative 6 direction. As B in-
creases further, & approaches the maximum values of * /2.

To find how 6 varies with B near B=1, we observe [see
(24)] that
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Fig. 9. (a) Displacement—frequency phase diagram for mechanical system.
(b) Field—temperature phase diagrams for an ideal and for a real ferromag-
net.

cos(8)=1/B. (30

For B near to but greater than 1, 6, will be small and we can
expand cos 6, in a Taylor series. Then,

6 1
- 5
and
f,=2"2(1— g 1", (31)

Figure 7(b) shows the magnetization—temperature phase
diagram for a ferromagnet with no external field. When
T>T,, the magnetization is zero. When T decreases below
T., the magnetization increases continuously from zero.
Note that it can be positive or negative. As T decreases fur-
ther, M approaches the saturation values *M,. Landau
theory'? predicts that as T approaches T, from below, M
goes to zero as (T,.— T)"2. This has the same form as (31).
However, for real magnets the exponent is closer to 3. This
shows one of the limitations of the Landau theory.

B. Order parameter—field phase diagrams

Figure 8(a) shows @ vs a for the mechanical system for
B<1. 6 changes continuously from positive to negative val-
ues as @ goes from positive to negative. Figure 8(b) shows
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the case where $>1. Here 6 changes discontinuously from
0. to —m/2<0<—6, at a=—a, (following the path with
single arrowheads), or from — 6, to 6,<#<m/2 at a=«, (fol-
lowing the path with double arrowheads).

Figure 8(c) shows plots of M vs B for a ferromagnet for
T<T.and T>T,. The curve for T>T, is of the same form
as Fig. 8(a), which corresponds to 8<1 for the mechanical
system.

The curve in Fig. 8(c) for T<T, is different from Fig.
8(b), which corresponds to 8>1 for the mechanical system.
The reason for this is that the 7<<T, curve in Fig. 8(c) is for
an ideal ferromagnet. Real ferromagnets are composed of
domains, which are small regions in which the magnetization
is a maximum. (See Ref. 14.) For the ideal ferromagnet with
T<T,, the magnetization changes direction when the exter-
nal field changes from a small positive to a small negative
value. In real ferromagnets, a finite field is necessary to
change the direction of the magnetization. This is shown if
Fig. 8(d). Following the path with the single arrowhead, the
magnetization remains positive until a negative field is
reached, at which point the magnetization jumps to a nega-
tive value. If the field is now slowly reversed, the ferromag-
net follows the path with the double arrowhead. This figure
demonstrates the phenomena of hysteresis in ferromagnets.
Figure 8(d) is of the same form as Fig. 8(b), showing the
analogy between the mechanical model and a real ferromag-
net.

C. Field—temperature phase diagrams

The field—temperature phase diagram of the mechanical
system is shown in Fig. 9(a). The solid curve represents a
line of first-order phase transitions; above the curve @ is posi-
tive and below the curve 6 is negative. The solid curve is
called a coexistence curve and the free energies of the two
phases are equal on it. It terminates on the B axis at S=1,
which is called a critical point. A system passing throuéh this
point will undergo a second-order phase transition.'®

Note that Fig. 9(a) is not a true phase diagram due to the
fact that the value of the phase, given by 8, cannot be deter-
mined from the diagram. For example, the value of @ at point
C depends on how the system got there. This is a conse-
quence of the fact that for a given S>1 and a given
—a.<a<a,, there are two possible values of 6. This is
shown in Fig. 8(b) and is reflected in the hysteresis of the
system. So, the solid line in Fig. 9(a) is the coexistence curve
for the situation when the point C has #<0. Then moving in
the direction of increasing « the system reaches the coexist-
ence curve and undergoes a first-order phase transition to
>0.

If the point C in Fig. 9(a) corresponds to >0, then the
dashed curve below the B axis is the coexistence curve and it
terminates at the same critical point as the solid curve.

Figure 9(b) is a graph of magnetic field B versus tempera-
ture T for a ferromagnet. The solid line along the T axis is
the coexistence curve for the ideal ferromagnet. Above this
curve the magnetization is positive and below the curve it is
negative. This is a line of first-order phase transitions and it
terminates at a critical point at T=T.

For a real ferromagnet the coexistence curve will resemble
the solid curve above the T axis. As with the mechanical
model, the point C does not have a unique value for the order
parameter. This is reflected in the hysteresis shown in Fig.
8(d). The solid curve above the T axis is the coexistence
curve when the point C has M <0. Then, increasing B with
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T<T, takes the system through the coexistence curve and M
changes discontinuously to M >0. The dashed curve below
the T axis is the coexistence curve for the point C having
M>0.

V. SUMMARY AND DISCUSSION

We have demonstrated that a mechanical model can simu-
late both first- and second-order phase transitions for certain
values of the parameters. This was shown by direct analysis
of the equations of motion and by examination of the minima
of the effective potential energy. It was then demonstrated
that the latter method is similar to the Landau theory of
continuous phase transitions. The energy-position graphs in
Figs. 3—6 are of the same general shape as those in Ref. 15
for a ferromagnet and Ref. 16 for a general free energy.

The analogy between the phase diagrams of the mechani-
cal model and the ferromagnet is-also very close if the hys-
teresis properties of the ferromagnet are included. Equiva-
lently, if the mass m could tunnel from the higher energy
local minimum to the lower in the metastable state, the me-
chanical system would simulate an ideal ferromagnet. The
quantum mechanical version of this model (@=0) is consid-
ered in Ref. 17.

Finally, it would be interesting to build a working model
of this system. Although finding a method for making quan-
titative measurements may require some imagination, the
qualitative aspects of the phase transitions would be easy to
observe.
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We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field.
An equation for the radiation reaction torque is derived, and the damping of the oscillations is
described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the
influence of the reaction torque, with no external torque. © 1997 American Association of Physics Teachers.

L. INTRODUCTION

When a compass needle is put in the earth’s magnetic
field, it oscillates about its equilibrium position for a few
seconds before coming to rest. The energy of oscillation has
been dissipated by friction. Even if there were no friction,
however, the oscillations would still be damped, although
very slowly, because a compass needle is an oscillating mag-
netic dipole and radiates electromagnetic energy.
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Figure 1 shows a magnetic dipole, with magnetic moment
m, which is free to rotate in the x,y plane about a pivot fixed
at the origin. The magnetic moment m(¢) is

m(t)=my(cos d(1)i+sin ¢(1)]). 1)

The equation of motion is that the torque equals the rate of
change of angular momentum, N=dL/dt. The torque is
N= mXB=—mB sin ¢ k for the magnetic field B=Bij the
angular momentum is L=/¢k, where I is the moment of
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