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This paper considers the parametric excitation of a pendulum swinging in a horizontal plane.
It is shown that there exist a number of different limit cycle motions, one of which is a steady
rotation about the point of support. This motion is associated with the mechanism whereby a
Hula-Hoop may be kept in rotation by an oscillatory motion of the point of support. The
stability and dependence of this type of motion on the initial conditions are analyzed in detail.

INTRODUCTION

N the past year or two a number of interesting

toys such as the Hula-Hoop and Eskimo
Yo-Yo have appeared on the American market.
The acceptance of these toys has been so wide-
spread that it is unnecessary to describe them
to an American reader. This paper is concerned
with the basic mechanism by which these toys
are made to rotate by applying an oscillatory
motion to them. Reduced to their simplest
terms, these toys are essentially pendulums
which are caused to rotate by an oscillatory
motion applied to their point of support.

THEORY

Consider a mathematical pendulum of length
! and mass m whose point of support 4 is caused
to move in a prescribed manner along a fixed
axis #z’, the support 4 being such that the
pendulum can rotate in a horizontal plane.

Let 9 be the angle which the pendulum makes
with the fixed axis 22’ (see Fig. 1).

EQUATION OF MOTION

Applying Lagrange’s equations to the system

shown in Fig. 1, the equation of motion is

mith B0 —mii sind =0, 1
where B0 represents the damping which is
present in all physical systems.

If in (1), the acceleration # is constant, the
equation describes the classical pendulum. In
the case of the Hula-Hoop, the acceleration £ is a
periodic function of time. Let

X =% COSwL, (2)
so that (1) becomes
mP 180 +-mawlix, coswt sind=0. 3)

Dividing through (3) by mi? and letting
B/mP =g, 4)
Eq. (3) becomes
G+ 8 +w?xo/l sind coswt=0. (5)

Since it contains time explicitly, Eq. (5) becomes
a system with heteroparametric excitation.

POSSIBLE MOTIONS

Analysis of Eq. (5) reveals that three possible
motions may exist.

(a) Static Equilibrium 6=0, =

As will be shown in the Appendix, this solution
is valid provided x¢/! <0.5.

(b) Steady Oscillation about 6=0 or 6==x

This motion will be studied in the Appendix;
it will be shown that this kind of motion may
exist only in the range 0.5 <x,/1<0.58.

(c) Steady Rotation about Point of Support

A third kind of motion is a quasi-steady
rotation about the point of support. This is the
kind of motion which is of special interest in the
Hula-Hoop problem, and hence will form the
main topic of this paper. Let

0=wlt9, (6)

where ¢ is a slowly varying function of time.
Substitute (6) into (5) to obtain

d¢/di+-wi+ide/dt
+w?xo/20[ sing+sin (2wi+¢) 1=0. (7)
EQUATION OF THE MEAN

Since it was assumed that ¢ was slowly
varying, Eq. (7) may be averaged over one cycle
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of the base acceleration # as follows:
(d*¢/d®)w+wl -+ (do/dt) s+ w’x0/ 2] singn =0, (8)

where ¢a is the average wvalue of ¢ over one
cycle of #.

It should be noted in passing that if {<1 and
wio/21<<1, then, since sings is a bounded
function, ¢ must be slowly varying.

STEADY-STATE MOTION

The steady-state rotational motion corre-
sponds to (d*¢/dt)n= (d¢/dt)w=0.
Hence (8) becomes

fwtw?re/2l sin(do)m =0, )

the zero subscript denoting the steady state.
From (9),

Sin(d)o)m,: —Zfl/wxo (10)
Real solutions of (10) exist if, and only if,

It will be assumed in the analysis that follows
that |2¢l/wxs| =v<1. With this restriction

(po)w= —sin"y42¢r, siny4+(2r+1)x

(r=0,1,2,---). (11)

STABILITY OF STEADY-STATE MOTION

Let 7 be a small perturbation and set

oa= (¢O)Av+7]-

(12)

S

7zt

F1G. 1. The physical pendulum, equivalent
to the Hula-Hoop.
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If we substitute (12) into (8) and use the steady-
state equation (9), Eq. (8) becomes

f4 4 wxe/ 21 cos{po)an=0. (13)
The conditions under which (13) is stable are
) >0,
(i) wxo/21 cos(po)a>0.

For real physical systems (i) is automatically
satisfied. If (¢o)w= —sin"ly+2rr, cos(¢o)w>0
and Eq. (13) defines a stable system; if (¢o)a
= (2r4+1)r+siny, cos(dow<0 and Eq. (13)
defines an unstable system.

Since 721 merely rotates the pendulum
through an angle 277, it is sufficient to consider
only the case for »=0. Thus Hula-Hoop type
motion is possible if, and only if, the pendulum
lags behind the motion of the support by an
angle sin~'y which lies between zero and =/2.

INFLUENCE OF INITIAL CONDITIONS

To study the influence of initial conditions
on the steady-state motion it is necessary to
eliminate the explicit dependence on time from
Eq. (8); to this end let

p= QSAV-

Equation (8) may now be written as two first-
order equations:

p: —wg'——g"j)—w2xo/2l Sin¢Av} (15)

(14)

on=7p
Hence

dp/den= — (Wi +{p+wxo/2 singw)/p.  (16)

SINGULAR POINTS OF EQ. (16)

The singular points of Eq. (16) are deter-
mined by the simultaneous vanishing of numera-
tor and denominator. Thus

W+ §pot (wce/21) sin (¢po)a = 0} (17
po=0J"
that 1s,
20/ wxo=v= —sin(¢o)n
5o=0 } (18)
Thus

(po)w= —sin"y+2rr, sin"y+ 2r+1)x (19)
P():O) (T=0y 1y2! ) '
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Fic. 2. Integral curves (undamped case). In this and
following figures, ¢ with a bar over it is equivalent to
¢av as it occurs in the text.

CLASSIFICATION OF SINGULAR POINTS

By using standard techniques' the singular
points are easily classified. They are as follows:

Point Nature of singularity

(o) = —sin1y+2rr Focal point—stable
(po)wy =sin"ly+(27+1)x Saddle point—unstable

£0=0,
Po=0,
In general Eq. (16) must be integrated by
graphical or numerical techniques. If =0,
however, Eq. (16) is an exact differential and
may be integrated straightforth ; thus

¢=0, 3p*— (w¥o/2l) cosdn=const. (20)

In the case in which { =0, the singular points are
(po)w=2rm, (2r4+1)w, and the focal points
become vortex points.

EQUATION OF SEPARATRIX

The equation of the separatrix is obtained by
passing the integral curve through any of the
saddle points:

($oln=(2r+Dw _
170:0 } (7_0’ 1, 2: )°

Thus the constant in Eq. (20) = w?eq/21.

Since ¢ and p are periodic with period 27, it is
convenient to use cylindrical phase space! to plot
the integrals of motion. This has been done in
Fig. 2, the separatrix is indicated by 4ACA4’D.
Stable motion about the vortex point B is
achieved if the initial conditions lie within the
shaded area bounded by the separatrix.

I N. Minorsky, Intreduction to Non-Linear Mechanics
(Edwards Brothers, Ann Arbor, Michigan, 1947).
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INTEGRALS OF MOTION FOR DAMPED CASE

In the case where the damping is not zero the
integrals of motion must be obtained by graphical
or numerical integration. This has been done
and the results are shown qualitatively in Fig. 3.
In this case, stable motions converging to the
focal point B are obtained for initial conditions
lying within the shaded regions. It is interesting
to note in passing that if ¢ is initially greater
than zero, i.e., if |8| >w, there is a good chance
of ‘“‘capture’” with stable Hula-Hoop motion
resulting. If however, ¢ is initially less than zero,
ie., if |8]| <w, there is very little possibility of
capture.

EXPERIMENTAL RESULTS

To verify the results of the above theory, the
rotating pendulum experiment was set up in the
Dynamics laboratory at Caltech; the base
motion being achieved by means of an M.B.
electromagnetic shake table. The pendulum was
illuminated by means of a General Radio
Strobotac so that the phase relationship between
the pendulum and the support could be studied.
It was found that:

(a) With small damping, the pendulum
rotated in phase with the motion of the support.

(b) If the initial angular wvelocity of the
pendulum was higher than o, the angular
frequency of the excitation, the pendulum was
“captured” in approximately half the tests. If
the initial angular velocity was lower than o,
the pendulum was never ‘“‘captured.”

FiG. 3. Integral curves (damped case).
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These results fully substantiate the theory
given in the foregoing.

CONCLUSIONS

The foregoing analysis provides a partial
explanation of the mechanism whereby toys
such as the Hula-Hoop and the Eskimo Yo-Yo
are made to rotate by oscillating their point of
support. The actual mechanism is somewhat
more complicated by virtue of the fact that the
person holding the toy is at liberty to change the
frequency of the oscillating support at will and
thereby accommodate a wider range of initial
conditions.

APPENDIX
Possible Motions

As was stated in the main body of this paper,
three possible motions may exist:

(a) siatic equilibrium 0=0, T;
(b) steady oscillation about §=0, or §=r;
(¢) steady rotation about point of support.

Case a. Stability

Let ¢=0 for simplicity, then it will be noted
that 8y=0, = are solutions of Eq. (5).

Let 6=00-+%, 80=0, x, n small. Equation (5)
becomes

i+ (wx0/1) cosfy coswt n=0. (22)
let 2z=wt, then
d*n/dz?+-[4(xo/1) cosfy cos2z Jp=0. (23)
Equation (23) is of the form
d*y/dz+ (a-+2q cos2z)y =0, (24)
Iq!
Stability Chart for Mathies's Equation
ety oS :izflz‘*' lo+2qcos2Zin: 0
O
Unstable Unstable
Points Nof Equilibrium
é=0,1
$a0
PR
< Stoble
-t Q i a

F1G, 4. Stability chart for Mathieu’s equation.
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which is Mathieu’s equation.? In this case ¢ =0,
lg| =2xo/l. If first-order theory is used to
compute the unstable regions of the Mathieu
equation,® it may be shown that Eq. (23) is
stable if

i x0/1<0.5. (25)

This is illustrated in Fig. 4. Hence the equi-
librium positions §=0, x are stable provided
x0/1<0.5.

lgl <1, ie,

Case b. Steady Oscillation about P oint of Suppori

If in (@) %0/1>0.5, the point (a,q) lies in the
first unstable region of the Matheiu equation.
In this region # has the form n=¢" cos(z-+¢).
This suggests that a finite amplitude solution of
the form 6=0-cos[ (wt/2)+¢] be used in Eq. (5).

Now,

wi
sing = sin[ﬁo cos (—2—+q§)]

wi
=271 (00) cos(;-l—qb)
3wt
—2735(80) cos(—;-l—\%) —- (26)
If fo<n/2,
wi
sinf~2J1(8s) cos(;-l—d)) (27}

(J»= Bessel function of the first kind, of order #).
Hence Eq. (5) with { =0 becomes

o? wt @
——f cos(~+q§) +——TJ1(60)
4 2 )

DI

Equating coefficients of cos[(w/2)-+¢] and
sin[ (w#/2)+¢] separately to zero, we get

w? wZ.’XJo
—-2—90'}- ] J1 (00) COSZ(]S '——‘—0, (29)
wkto .
J1(8o) sin2¢ =0. (30)

/

tN. W. McLachlan, Theory and Application of Mathieu
Functions (Oxford University Press, London, 1947).

3 C. Hayashi, Forced Oscillations in Non-Linear Systems
{Nippon Printing Company, Osaka, Japan, 1953).
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Solutions to (29) exist for 0<8y<w only if
2¢ =0, 2w, 47. Hence (29) becomes
00=~‘ (4x0/l)]1 (00)

Solutions exists only for (x¢/7) >0.5.

(32)

Stability of Oscillation Motion

By letting # be a small perturbation on 6, we
may set

wi
=0, COS(—2—+¢ +a. (33)
Equation (5) with ¢ =0 then becomes
wt
ﬁ—f—-xowZ/ZI:COS{ 6o cos(—z--l—d;) } coswt]n =0. (34)
Because
wl
cosi by cos(;—l—q&) }
= Jo(86) —2J2(0¢) cos(wt+2¢)---, (35)
Equation (34) becomes
ﬁ+xow2/l["‘J2<0o) COSZ¢+J0(00) coswi
—J3(60) cosQut+2¢)— - -- In=0. (36)
Let 23=wt, then
d*y
;'{‘4960/1[— J2 (00) COSZ¢+ Jo (00) cos2z
2
— J3(00) cos(4z+2¢) In=0. (37)
Since 2¢=0, 2=, 47, Eq. (37) becomes
d™
;-{—4&00/1[— Js (00) +J (00) cos2g
b2
— J2(80) cosdzln=0. (38)
Equation (38) is of the form
d*y ®
—+[a+ ¥ 2q, cos2yzn=0, (39)
daz? v=1

which is a Mathieu-Hill equation.

If the discussion is restricted to values of
8y <w/2, (38) may be approximated by a Mathieu
equation with

a= - (4960/l)]2(00)

(40)
g=(2x0/1)Js(8)

T. K. CAUGHEY

By using Eq. (32),

4xo/l=90/11(00), (41)
and combining (41) and (40),
a= —90]2(00)/.]1(00)
(42)

g=306T0(80)/T:(80) |

By using (42) it is possible to calculate @ and ¢
parametrically and to plot them in the stability
chart to determine when the motion is stable.
This has been done in Fig. 4. From curve AB
it will be seen that if #,>1.1 radians the system
is unstable. The corresponding value of x/I at
point B is 0.58. Thus the oscillatory motion is
stable only in the range 0.5 <ux¢/1<0.58.

Case ¢. Steady Rotation about Point of Support

In addition to motions (¢) and (&), it was
shown in the first part of this paper that rotation
about the point of support was also possible.
It was shown that if ¢=0,

Bo)w=wt+ (@o)a, (Go)a=0,m. (43)

Stability of Rotational Motions

Let 6= (fo)s—+7n, where n is a small pertur-
bation. Equation (5) becomes

7 ~wx0/21{cos (¢o)swtcos[ 2w+ (do)a 1} n=0. (44)
Letting 2wt (do)a = 22,

(d*n/dz?) +x0/ 2 cos (o) wtcos22]p=0. (45)
This is a Mathieu equation with
a= (x0/21) cos <¢O)Av} 16
|l = Goo/4D) ' 4o
hence
a=2|q| cos(do)n- (47)

Equation (47) is plotted in the stability chart of
Fig. 4. It will be seen that (¢o)a=0 is stable if
a=x¢/21<0.67, i.e., il x0/1<1.34. If (¢po)a=m, the
system is unstable for all values of xo/1.

It should be noted in passing that the Mathieu
equation approach verifies the analysis based on
the equations of the mean. It is interesting to
note in passing that if in Sec. (b) x0/1>0.58, the
point (a,q) lies in an unstable region where n takes
the form n=e'. This suggests that a finite
amplitude solution of the form 6= wt+¢ be used
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in Eq. (5). The analysis of Sec. (c) shows that
such a motion would be stable.

Experimental Results

To verify the results of (@) and (b) above, the
experimental setup used in the first part of the
paper was again used. It was found that:

(i) If the pendulum was initially at rest and
the support was oscillated, the pendulum would
take up an equilibrium position corresponding to
6=0 or w, provided the amplitude of oscillation
of the support was small enough.

(ii) If the amplitude of oscillation of the
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support was increased, a point was reached at
which the pendulum began to oscillate about the
equilibrium position. Further, it was observed,
by means of the stroboscope, that the frequency
of oscillation was exactly half that of the support.

(iii) If the amplitude of oscillation of the
support was increased still further, a point was
reached at which the oscillatory motion became
unstable and the pendulum began to rotate
about the point of support in Hula-Hoop
fashion. The values of x4/ corresponding to these
different types of motion were found to be
in qualitative agreement with the theory.

Extending the Lorentz Transformation by Characteristic Coordinates

RoserT T. Jones*
National Aeronautics and Space Administration, Ames Research Center, Moffeit Field, California

(Received May 28, 1959)

The problem considered is that of rectilinear motion with variable velocity. The paper gives,
by an elementary construction, a system of coordinates which is conformal in a restricted
region near the axis of the motion. In such coordinates the velocity of light remains invariant
even for observers moving with variable velocity. By a particular choice of the scale relation
the restricted conformal transformations can be made to reduce to the Lorentz transformation
everywhere in the case of constant velocity and locally in the case of variable velocity.

N the American Journal of Physics, November,
1958, Leffert and Donahue call attention to
irregularities that appear when the Lorentz
transformation is extended to problems of
variable motion. Figure 1 illustrates the difficulty
alluded to. Here the moving origin of a system
B is plotted as a curvilinear world line on a
rectangular system which is not shown, but
which we may designate as 4. In such a diagram
the lines #'=constant associated with B are
oblique and if they are continued as straight
lines they will cross, leading to a nonuniform
correspondence of events between the 4 and B
systems. This lack of uniformity appears in the
conventional treatments of the problem, as, for
example, in the analysis given by Mgller.?

A uniform correspondence can be achieved,
however, if the Lorentz transformation is ex-
tended by means of characteristic lines, rather

* Aeronautical Research Scientist.

L C. Mgller, The Theory of Relativity (Clarendon Press,
Oxford, 1952}, pp. 258-263.

than along straight ¢ lines. An extension along
straight ¢’ lines amounts to the assumption that
the Lorentz transformation propagates instan-
taneously in the B system and at the electro-
magnetic phase velocity ¢?/v in the 4 system.
The characteristic lines, however, have the same
slope in either system, and of course propagate
at the velocity of light. The use of the charac-
teristic lines establishes a conformal corre-
spondence between the two systems x, 2t and
x',it'. As is well known, such transformations
preserve a constant velocity of light during
accelerated motions, even in three-dimensional
space, if they can be established.?® This note
shows how such coordinates can be established
in the vicinity of the line of motion for a system
with variable rectilinear velocity.

Figure 2 shows the curvilinear coordinates
obtained in the xt plane when the Lorentz

*H. Bateman, FElectrical and Optical Wave Motion
(Dover Publications, New York, 1955), S14.
¢ .. Infeld and A. Schild, Phys. Rev. 26, 250-272 (1945).




