Then from Eq. (11)
Ylx.t) = exp (i/A)[mx'at’ + L ma’t *] Ai[(2m*a)'*x']
= exp (i/#)[ mat (x — L at’}]

X Ai[(2m?a)'P(x — lat ?)] (16)
is a solution of the free Schrodinger equation. This feature
was noted by Berry and Balasz,* who observed that this
particular wave packet evolves in time without spreading, a
result which they explained in terms of families of semiclas-
sical phase-space orbits. Later Greenberger® argued that

the result could be more simply understood in terms of the
behavior of the Schrddinger equation under the extended

Galilean transformation, as done above—hence spreading
does not occur because the wave function is a stationary
state solution for a particle in a uniform gravitational field.
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Jean Sivardiére

Centre D’Etudes Nucléaires de Grenoble DRF/Laboratoire Interactions Hyperfines 85 X-38041, Grenoble

Cedex, France

(Received 8 September 1982; accepted for publication 20 January 1983)

We discuss a simple mechanical system and show that it exhibits a spontaneous symmetry
breaking quite similar to a Landau second-order phase transition.

We consider a solid circle of center O and radius @, in a
vertical plane of azimuth ¢. This circle rotates about the
vertical diameter at constant angular velocity d¢ /dt = 0.
A material point M of mass m can move along the circle
without any friction: its position is given by the angle 8
(Fig. 1). This model has been considered already’: It repre-
sents for instance a rotating hoop with a bead sliding along
the hoop.

We look for an equilibrium position of M in a frame
rotating with the circle. The tangential force acting on M is

F= —mgsin6 + mf*rcos 6, (1)
where r = a sin @ is the distance of M to the rotation axis.

Fig. 1. The mechanical model: a bead sliding along a rotating hoop.

1016 Am. J. Phys. 51 (11), November 1983

Equilibrium is found for ¥ = 0. The solutions are: & = 0,
0 =, and also, if 2> 2, = (g/a)'’?, 6 = + 6, with

cos 6, =(2./2). (2)
If 2— 0, 8,7—7/2. If 6<1, one finds
F~—mg[1—(02/02.)]0 (3)

so that equilibrium at 8 = 0 is stable for £2 <2, and unsta-

u(e)
4
(@)
1 L 8
ar 0 ™
4 ule)
(b)
1 -% ?" )
-r ™
Fig. 2. Potential energy U(8) for 2 < {2, and 2> 02,.
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Fig. 3. Variation of the order parameter: 7(T) and 6 (2.

ble for 2> 2,.If 8 = 7 — € (e«]1),

F~—mg[1+(2/02.)] € (4)
so that equilibrium at € = 7 is always unstable. Finally, if
0= 46, + € (e<])

F~ — (mN%asin® ) € (5)
so that equilibrium at § = 4 6, is always stable.

The instability of the & = 0 position as {2 becomes larger
than £2. is clearly demonstrated by considering the poten-
tial energy U (@) of M in the rotating frame:

U@)=mga [(1—cos@)— 402 /N%)sin’8]. (6)
The first term in U (@) is gravitational, the second one is the
potential of the centrifugal force. U (@ )is represented in Fig.
2for 2 < N2, and 2 > £2_; stable equilibrium is found if dU /
d6=0,d*U/d6*>0.

The instability found at @ = Ofor £2 = {2, is quite similar
to a Landau second-order phase transition,” with the fol-
lowing analogies: :

Temperature T
critical temperature T,

c

angular velocity (2
critical angular velocity 2.
order parameter 7 stable equilibrium arigle 8

T>T,, 7=0 02<n, =0
T<T,, n%#0 {.(2>.()C, 0 =6,#0
free energy ¢ (%) potential energy U (@)

These analogies between our mechanical system and a
Landau system are formal: T and {2 ate external param-
eters; 7 and @ are state variables. However, as explained
below, they also hold for the symmetry and dynamics of the
two systems.

(1) For T'slightly less than 7, the Landau order param-
eter 77 is proportional to (1 — T'/7.)"/2.3 Similarly we get
from (2), for £2 slightly larger than 2,

1-03%/2=~02/027, (7)
whence
Op=~2(1 — 2./02)"?. (8)

Figure 3 shows the variation of the equilibrium angle ver-
sus (2. _

(2) The system exhibits the critical slowing down also
found in systems with a second-order phase transition.
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Xlo)

1
{b) g

Fig. 4. (a) Variation of the oscillation pulsation w, with £2. (b) Variation of
the static susceptibility with (2.

From (3) we determine the frequency o, of the oscilla-
tions of M around the equilibrium position § = 0 (2 < £2,):

0y =02—-07. (9)
From (5) we determine the pulsation @, of the oscillations
of M around the equilibrium position 8 #0 (2> £2_):

0y = 27%sin” 4,

=027[1-(R2./2)]. (10)

Figure 4(a) shows the curve w, vs 2: w, = 0 for 2 = 2.

{3) We suppose now that a weak tangential force fcos wt
is applied to M in the vicinity of the equilibrium position
and calculate the susceptibility y (). 6 is a solution of

d?6

+02sinf—027sinfcos 0= coswr. (11

dt? ma
For 2« 12,, 6«1 so that
ﬁ+w§6=—f——coswt (12)
dt? ma
and
6 = [(f/ma)/(wg — @”)] cos wt . (13)

Similarly for 2> 2_, 8~6, + € (e<1) so that
sin ~sin 8, + € cos G, ,

(14)
cos f~cos 8, — € sin 6, ,
whence, using (2) and (10),
Z:g +w§e=£coswt. (15)
The susceptibility y (w) is then, whatever the value of £2
xlo) = (1/ma) [1/(&} — &?)] . (16)

Figure 4(b) shows the curve y (&) for » = 0 (static suscepti-
bility): y (0} is infinite for £2 = £2,.

In conclusion the mechanical system we have considered
is very similar to a system exhibiting a second-order phase
transition, or to the Alben device.*

(1) The system has a mirror symmetry in the rotating
frame. As long as £2 < £2_, the stable equilibrium position is
symmetrical. The symmetry is broken when £2 > £2_, since
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equilibrium is found outside the vertical diameter of the
circle. This symmetry change is spontaneous in the sense
that the symmetry of the environment of the system is not
modified as {2 goes through the value £2, . In the same way,
the time reversal symmetry of an Ising magnet is spontan-
eously broken at the magnetic transition, as the tempera-
ture T is lowered below some critical value T,.

(2) We check here the general property” that the solution
of a symmetrical problem is symmetrical only if it is
unique. For £2 < (2, stable equilibrium is found only for
@ = 0 and is symmetrical. For £2> £2_, it is found for two
different positions & = + 6, and is nonsymmetrical. The
two solutions 8 = + 6, are similar to the two domains of
opposite magnetization of an Ising magnet below 7., they
are symmetry related.

(3) The bifurcation found at £2 = 2, is a consequence of

Weighing the Earth with a sextant
L. M. Celnikier

the softening of the oscillation of M around the equilibrium
position & = 0 as £2 increases. The instability is similar to a
displacive® phase transition.
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This article presents a simple, but accurate, method for determining the distance of the Moon
using a cheap sextant. This result can then be used to obtain the size of the Moon and the mass of

the Earth.

The distance of the Moon has played an important role
in the history of science. It was the only cosmic distance
which the ancient Greeks were able to determine with any
kind of precision, while Tycho Brahe, by showing that
comets were certainly more distant than the Moon, con-
tributed to the demise of the Aristotelian vision of the uni-
verse. '

Cosmic distance scales are based on one of two essential
methods. Simple triangulation using the largest available
base line provides a scale for nearby objects. The Earth’s
surface furnishes a base line for the Moon and certain aster-
oids (although to a large extent laser and radar ranging
have replaced this method as far as the solar system is con-
cerned), while the annual movement of the Earth itself
around the Sun provides a suitable base line for the nearer
stars. The distances of distant stars and galaxies are ob-
tained indirectly, using essentially a measure of their ap-
parent brightness coupled to some more or less plausible
and more or less well-verified set of hypotheses concerning
their intrinsic brightness.

Geometrical methods are inherently more reliable if at
all applicable, since no suppositions concerning the nature
of the object enter into the procedure. However, they suffer
from two drawbacks. In the first place, a large base line is
needed, and in the second directions must be determined
with high precision.

The Earth furnishes an excellent base line of variable
length: during the course of 12 h an observer is carried
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through a distance of 12 000 km: over such a base line, the
direction in space of a fixed object at the distance of the
Moon changes by about one degree. This fact was already
recognized by Tycho Brahe; its power is that one person
can, in principle, carry out all the measurements and it is
not necessary to set up a time synchronized team of observ-
ers at opposite ends of the globe. The same principle is of
course applied to measurements of stellar parallaxes at op-
posite ends of the Earth’s orbit.

While one degree is not an impossibly small angle to
measure, it is also by no means trivial with simple instru-
ments—the mountings of most small amateur telescopes
are really quite inadequate (in spite of the makers’ claims)
and cannot be used to obtain a spatial direction to this pre-
cision without considerable effort. The problem is com-
pounded by the fact that the Moon is not stationary: its
orbital motion is in the same direction as the rotation of the
Earth and so the apparent parallax is actually smaller than
it should be; moreover, measurements cannot in practice be
spread over 12 h and are rarely made at the equator, so that
the effective base line is much smaller than 12 000 km.

The mariners’s sextant is a rather accurate device. Pro-
fessional instruments are very expensive, but it has for
some time been possible to obtain cheap plastic models
which, in spite of their apparent simplicity, are quite rug-
ged and have an inherent precision better than one minute
of arc even in relatively unskilled hands—I do not know
the American market, but an instrument of this type is
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