
Physics 106a/196a – Midterm Exam – Due Nov 3, 2006

Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala

Version 2: November 7, 2006

version 2: Correct error in Eqn 22 in solution to Problem 4 (algebra error).
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Problem 1

2



Problem 2

Conservation of energy yields

T +Q = T3 + T4 (1)

⇒ T +Q =
p2
3

2m3
+

p2
4

2m4

where T, p are the kinetic energy and the momentum of the incident particle, and T3,4, p3,4 of the
particle m3,4. Conservation of momentum along the track of the incident particle is

p = p3 cosψ3 + p4 cosψ4

⇒
√

2m1T = p3 cosψ3 + p4 cosψ4 (2)

Conservation of momentum perpendicular to the track of the incident particle is

p3 sinψ3 = p4 sinψ4 (3)

Plugging Eq. (3) into Eq. (2) gives us

p3 =
√

2m1T

sinψ3 (cotψ3 + cotψ4)
(4)

p4 =
√

2m1T

sinψ4 (cotψ3 + cotψ4)
(5)

which, together with Eq. (1), yields

T +Q =
2m1T

(cotψ3 + cotψ4)
2

(
1

2m3 sin2 ψ3
+

1
2m4 sin2 ψ4

)
(6)

⇒ T = Q
(cotψ3 + cotψ4)

2

m1

(
1

m3 sin2 ψ3
+ 1

m4 sin2 ψ4

)
− (cotψ3 + cotψ4)

2

When Q → 0 , we note from Eq. (6) that ψ3 and ψ4 are not independent and the denominator of
Eq. (3) will also go to zero which will make T finite.
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Problem 4

(a) We employ the coordinates system from Example 2.3 in the lecture notes. The system is
invariant under translation along the X coordinate, which corresponds to the transformation
(X, d) → (X + a, d). One can prove this by explicit substitution or simply by noting that the
Lagrangian is cyclic in X (but not in d !).

The associated conserved momentum is pX ,

pX = (m+M) Ẋ +mḋ cosα (7)

If one used the inertial coordinate system from part (b) of the problem, the transformation
is the same in concept, translation along the x direction. The specific transformation is
translation of both the coordinates, (xp, yp, xb, yb) → (xp + a, yp, xb + a, yb). The conserved
momentum is pxp + pxb

,

pxp + pxb
= Mẋp +mẋb

In both cases, the conserved momentum is just the total linear momentum in the x direction
of the “system of particle” consisting of the plane and the block (Equation 1.16 of the lecture
notes). Using Equation 1.17 from the lecture notes, its conservation reflects the fact that
there is no external force acting along the x direction. This makes sense, as the only external
force acting in the problem is gravity acting downward on both the plane and the block.
There are of course internal forces between the block and plane acting, which cause Ẋ and ḋ
(or ẋp and ẋb) to individually change, but always subject to conservation of horizontal linear
momentum.

(b) The kinetic energy is

T =
1
2
M

(
ẋ2
p + ẏ2

p

)
+

1
2
m

(
ẋ2
b + ẏ2

b

)
The potential energy is

U = mgyb +Mgyp

Note that you must include the potential energy in yp because it is now being considered a
dynamical coordinate! This was a frequently made mistake in the exams.

The constraint equations are (taking the (xp, yp) to indicate the position of the bottom right
corner of the plane, where the angle α is)

Gp ≡ yp = 0
(yb − yp)
(xb − xp)

= − tanα⇒ Gb ≡ (yb − yp) cosα+ (xb − xp) sinα = 0

Note that the rewriting of the second constraint as a sum of terms linear in the coordinates is
quite convenient because it makes taking the partial derivatives ∂Gp

∂qk
easy. Our six equations
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are

∂L

∂xb
− d

dt

∂L

∂ẋb
+ λp

∂Gp
∂xb

+ λb
∂Gb
∂xb

= 0

∂L

∂yb
− d

dt

∂L

∂ẏb
+ λp

∂Gp
∂yb

+ λb
∂Gb
∂yb

= 0

∂L

∂xp
− d

dt

∂L

∂ẋp
+ λp

∂Gp
∂xp

+ λb
∂Gb
∂xp

= 0

∂L

∂yp
− d

dt

∂L

∂ẏp
+ λp

∂Gp
∂yp

+ λb
∂Gb
∂yp

= 0

Gp = 0
Gb = 0

Written out explicitly, they are

−mẍb + λb sinα = 0 (8)
−mg −mÿb + λb cosα = 0 (9)

−Mẍp − λb sinα = 0 (10)
−Mg −Mÿp − λb cosα+ λp = 0 (11)

yp = 0 (12)
(yb − yp) cosα+ (xb − xp) sinα = 0 (13)

We see immediately

yp = 0 =⇒ ÿp = 0 (14)

Using the first constraint, we differentiate the second constraint twice to obtain

ÿb = − (ẍb − ẍp) tanα (15)

Combining the xb and xp equations, we obtain

mẍb +Mẍp = 0 =⇒ ẍp = −m
M
ẍb (16)

We also have from the xb equation

mẍb = λb sinα (17)

We eliminate yb and λb from the yb equation:

−mg +m (ẍb − ẍp) tanα+mẍb cotα = 0 (18)

Then we eliminate xp:

−mg +m
(
1 +

m

M

)
ẍb tanα+mẍb cotα = 0 (19)

Now solve for ẍb:

ẍb =
g

cotα+
(
1 + m

M

)
tanα

=
g cosα sinα

cos2 α+
(
1 + m

M

)
sin2 α

=
g cosα sinα
1 + m

M sin2 α
(20)
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We of course will not penalize you for not reducing the result to this clean form, but you
must have written ẍb only in terms of g, m, M , and α (no other accelerations or λ’s) to get
full credit. We may now obtain the other accelerations and the Lagrange multipliers:

ẍp = −m
M
ẍb = −g cosα sinα

M
m + sin2 α

(21)

This reproduces the acceleration Ẍ found in the lecture notes because xp and X are the same
coordinate. For yb, use the relation between ÿb, ẍb and ẍp:

ÿb = −ẍb
(
1 +

m

M

)
tanα = −

g
(
1 + m

M

)
sin2 α

1 + m
M sin2 α

(22)

The results for ẍb and ÿb match the result found for ~̈rb found in the lecture notes. Finally, we
may solve for the Lagrange multipliers:

λb =
mẍb
sinα

= g
m cosα

1 + m
M sin2 α

(23)

λp = Mg + λb cosα = g
M

(
1 + m

M sin2 α
)

+m cos2 α
1 + m

M sin2 α
= g

M +m

1 + m
M sin2 α

(24)

Constraint forces are

Nxb
= λb

∂Gb
∂xb

+ λp
∂Gp
∂xb

=
mg cosα sinα
1 + m

M sin2 α

Nyb
= λb

∂Gb
∂yb

+ λp
∂Gp
∂yb

=
mg cos2 α

1 + m
M sin2 α

Nxp = λb
∂Gb
∂xp

+ λp
∂Gp
∂xp

= −mg cosα sinα
1 + m

M sin2 α
= −Nxb

Nyp = λb
∂Gb
∂yp

+ λp
∂Gp
∂yp

= − mg cos2 α
1 + m

M sin2 α
+ g

M +m

1 + m
M sin2 α

= g
M +m sin2 α

1 + m
M sin2 α

= Mg

Nxb
and Nyb

are the x and y components of what you usually think of as the “normal force”
exerted by the plane on the block. Nxp is just the reaction force of the block on the plane
in the x direction. Nyp is the force exerted by the flat surface to counter gravity to keep the
plane at yp = 0.

One might think that Nyp should include a force to counter the force exerted downward on
the plane by the block (the reaction force to Nyb

). That is not true because Nyp only has
to counter the forces that are present in the potential term in the Lagrangian. But one can
actually see this extra needed force inside the constraint force. Note that Nyp is the sum of
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two pieces. The λb term is the reaction force of the block on the plane, acting downward,
and the λp term is the force that the flat surface must exert to counter both gravity and the
λb force – see the earlier equation that gives λp = Mg + λb cosα. We only see Mg in the
end because the total constraint force Nyp is the force that must be exerted to counteract the
forces explicit in the Lagrangian. But, clearly, via the Lagrange multipliers, we can identify
the internal forces (which are not written in the Lagrangian) that cancel each other out.

Problem 5
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Problem 6

(a) We start with the action for L′

S′ =
∫ t1

t0

L′dt =
∫ t1

t0

(
L+

d

dt
F ({qk} , t)

)
dt

=
∫ t1

t0

Ldt+ F ({qk (t1)} , t1)− F ({qk (t0)} , t0)

Since qk (t1) and qk (t0) are fixed, so we have

δS′ = δS

which means L′ yields the same Euler-Lagrange equations as L.

(b) The Lagrangian of a particle moving in the electromagnetic field is

L =
1
2
mv2 − q

[
φ (−→x )−

−→
A (−→x ) · −→v

]
The gauge transformation of the scalar and vector potential gives us

L′ =
1
2
mv2 − q

[
φ′ (−→x )−

−→
A ′ (−→x ) · −→v

]
= L+ q

[
∂ψ

∂t
+
−→
∇ψ · ∂

−→x
∂t

]
= L+ q

dψ

dt

which is one special case of Part (a) with F = qψ. From (a), we know the Euler-Lagrange
don’t change. You can also see this by noticing that

−→
E ′ (−→x ) = −

−→
∇φ′ (−→x )− ∂

−→
A ′ (−→x )
∂t

= −
−→
∇φ (−→x )− ∂

−→
A (−→x )
∂t

=
−→
E (−→x )

−→
B ′ (−→x ) =

−→
∇ ×

−→
A ′ (−→x ) =

−→
∇ ×

−→
A (−→x ) +

−→
∇ ×

−→
∇ψ =

−→
B (−→x )

The result for the change in the Lagrangian is consistent with the result for the effect on the
motion according to Part (a) with F = qψ.
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