Physics 106a/196a — Midterm Exam — Due Nov 3, 2006
Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala
Version 2: November 7, 2006

version 2: Correct error in Eqn 22 in solution to Problem 4 (algebra error).
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Problem 2

Conservation of energy yields

T+Q=T3+T4 (1)
2 2
2m3 2m4

where T', p are the kinetic energy and the momentum of the incident particle, and 734, p3 4 of the
particle m3 4. Conservation of momentum along the track of the incident particle is

D = P3 COS 3 + P4 COS P4

= V2m1T = p3 cos 3 + ps cos iy (2)
Conservation of momentum perpendicular to the track of the incident particle is
pasiniz = pysiniy (3)
Plugging Eq. (3) into Eq. (2) gives us
2mq T
p— 4
P3 = Gn 3 (cot 13 + cot y) )
vV 2m1T
pa = (5)

sin 14 (cot 3 + cot 1y)

which, together with Eq. (1), yields
2mq T 1 1
T+Q= m 2( —— + —s > (6)
(cot 1p3 + cot1pg)” \2mgsin“ 1P 2mysin® iy
(cot hg + cot w4)2
mi <m3 si1n2 Tt 1 ) — (cot b3 + cot 1y)*

My sin? Pa

=T=Q

When @ — 0, we note from Eq. (6) that 3 and 14 are not independent and the denominator of
Eq. (3) will also go to zero which will make 7" finite.



Problem 3
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Problem 4

(a) We employ the coordinates system from Example 2.3 in the lecture notes. The system is
invariant under translation along the X coordinate, which corresponds to the transformation
(X,d) — (X 4 a,d). One can prove this by explicit substitution or simply by noting that the
Lagrangian is cyclic in X (but not in d!).

The associated conserved momentum is px,

px = (m+M)X +mdcosa (7)

If one used the inertial coordinate system from part (b) of the problem, the transformation
is the same in concept, translation along the z direction. The specific transformation is
translation of both the coordinates, (xp, yp, Tp, yp) — (Tp + @, Yp, Tp + a,yp). The conserved
momentum is pg, + pz,,

Dz, + Dz, = Mip + mxy

In both cases, the conserved momentum is just the total linear momentum in the z direction
of the “system of particle” consisting of the plane and the block (Equation 1.16 of the lecture
notes). Using Equation 1.17 from the lecture notes, its conservation reflects the fact that
there is no external force acting along the = direction. This makes sense, as the only external
force acting in the problem is gravity acting downward on both the plane and the block.
There are of course internal forces between the block and plane acting, which cause X and d
(or &, and ) to individually change, but always subject to conservation of horizontal linear
momentum.

(b) The kinetic energy is
1 . . 1 . .
T = §M (%20 —l—yg) + im (w% + yg)
The potential energy is
U =mgys + Mgyp

Note that you must include the potential energy in y, because it is now being considered a
dynamical coordinate! This was a frequently made mistake in the exams.

The constraint equations are (taking the (z,,,) to indicate the position of the bottom right
corner of the plane, where the angle « is)

Gp=yp=0

(ys — Up)

() =—tana = Gy, = (yp — Yp) cosa + (zp — xp)sina =0
b 4p

Note that the rewriting of the second constraint as a sum of terms linear in the coordinates is
. . . . . o oG, . .
quite convenient because it makes taking the partial derivatives g €asy. Our six equations

k




are

OL d 0L \ 0G), oGy,

or _don A
ory  diom, oz, M m,
oL d oL . 3G, . G,
e 2
dyy  dtdy, T oy, oy
oL d OL _ 0G, . 9Gy
o5, dion, " Mam, T Nos, "
oL  d oL . 9G, . Gy
e D) 2
Oyp  dt 0y P oy, oyp oy, oyp
G, =0
Gy =0

Written out explicitly, they are

—mdp + Apsina = 0

—mg — mijp + Apcosa =0
—Mi, — Npsina =0

—Mg — Mij, — Nycosa+ Ay, =0
yp =20

(yp — yp) cosa + (xp — xp) sina = 0

We see immediately
Yyp=0 = 4p=0

Using the first constraint, we differentiate the second constraint twice to obtain
ip = — (Zp — Ip) tan o

Combining the x;, and x, equations, we obtain

miy+ Mip, =0 = i,=——i

=|3

We also have from the x;, equation
mip, = A\psin «
We eliminate y, and Ay from the y;, equation:
—mg + m (& — &p) tan o + mdp cot e = 0
Then we eliminate x):
—mg+m (1 + %) Iptana + mapcota =0

Now solve for Zy:

g g cos asin « g cos a:sin o

i’ p— p— p—
b cota+(1+%)tana 0052a+(1+%)sin2a 1+%sin2a

~—~~ ~ —~
—_
—_

— Y Y — —



We of course will not penalize you for not reducing the result to this clean form, but you
must have written &, only in terms of g, m, M, and « (no other accelerations or A’s) to get
full credit. We may now obtain the other accelerations and the Lagrange multipliers:

m . g cos asin o

Gy = iy = T 21
p M b %—l—sinQa ( )

This reproduces the acceleration X found in the lecture notes because z, and X are the same
coordinate. For v, use the relation between g, &) and Zp:

g(1+%)sin2a
1+ 37 sin? o

ip = —dp (1 + %) tana = — (22)

The results for & and g, match the result found for 7, found in the lecture notes. Finally, we
may solve for the Lagrange multipliers:

may ™ COS Qv
57 sina gl—i—%singa (23)
M(1+%sin2a)+m0052a_ M+m

m oia2 m o i..2
1+MSID « 1+Msm «

Ap=DMg+ Nycosa=g

Constraint forces are

0G oGy,
i + )\pa—wb
mg cos o sin o
1+ 37 sin? o
oGy 0G),

7_|_ —
Oy P oy

mg cos®

1+%sin2a
oGy 0G),

Ne = A +\,—2
» = Moz, T Yo,

mg cos « sin «

1+ Zsina
oGy 0G),
Ny, = p—— )‘pi
Oyp Oyp
mg cos? a M+ m M + msin® o
=T mae T e, I s m . = MY
+ 37 sin” « l—i—Msma l—i—Msma

Ny = Np——

Ny, = Ay

N, and Ny, are the z and y components of what you usually think of as the “normal force”
exerted by the plane on the block. N, is just the reaction force of the block on the plane
in the x direction. Ny, is the force exerted by the flat surface to counter gravity to keep the
plane at y, = 0.

One might think that N,, should include a force to counter the force exerted downward on
the plane by the block (the reaction force to N,,). That is not true because N, only has
to counter the forces that are present in the potential term in the Lagrangian. But one can
actually see this extra needed force inside the constraint force. Note that N, is the sum of



two pieces. The )y term is the reaction force of the block on the plane, acting downward,
and the A\, term is the force that the flat surface must exert to counter both gravity and the
Ap force — see the earlier equation that gives A\, = Mg + A\ycosa. We only see Mg in the
end because the total constraint force IV, is the force that must be exerted to counteract the
forces explicit in the Lagrangian. But, clearly, via the Lagrange multipliers, we can identify
the internal forces (which are not written in the Lagrangian) that cancel each other out.
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Problem 6

(a) We start with the action for L’

S’—/t:l L’dt—/t:l (L+ —F ({a}, t)>

_ / ULt P (g (00} 40) — F ({ge ()} o)

to
Since gy, (t1) and g (tp) are fixed, so we have
08" =68
which means L’ yields the same Euler-Lagrange equations as L.

(b) The Lagrangian of a particle moving in the electromagnetic field is

L:%mﬁ—q[qa(?)—Z(?)-ﬂ

The gauge transformation of the scalar and vector potential gives us

1 — N
vl gfo @ - T 7))
0 - 07
—L—I—q[(;f—l—V@ZJ aﬂ
d
_L+q$

which is one special case of Part (a) with F' = ¢i). From (a), we know the Euler-Lagrange
don’t change. You can also see this by noticing that

= OA (T - . 0A(T
)= T (@) - A D Gy YA

/(?
)=V x A (T)=VxA(T)+V x V¢ = B (7)

'

The result for the change in the Lagrangian is consistent with the result for the effect on the
motion according to Part (a) with F' = g.
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