
Physics 106b/196b – Midterm Exam – Due Feb 9, 2007

Solutions

Peng Wang, Sunil Golwala

Version 2: February 16, 2007

v. 2: A number of students have indicated how Problem 3 could be read differently than intended.
We add a solution that corresponds to that reading.

Problem 1

The three torsion pendulums are subject to the same torques because the string that is being
twisted does not change. Euler’s equations give us

τ = Iiωi i = 1, 2, 3

where I1, I2, and I3 are the moments of inertial for the cube that is hung from a corner, one from
midway along an edge, and one from the middle of a face relative to the wires, respectively. So

ωi =
τ

Ii
i = 1, 2, 3

and the ratios of the periods of the three pendulums are

T1 : T2 : T3 = I1 : I2 : I3

The moment of inertial tensor relative to the center of mass for case (b) where we assume z-axis is
along the wire and x-axis and y-axis point through the middles of a face is

I2 =

Ixx 0 0
0 Iyy 0
0 0 Izz


where Ixx = Iyy = Izz = I2 due to symmetry. Because I2 is proportional to the identity, it will be
invariant under any rotation with the center of mass fixed. Since the axis of the rotation passes
through the center of mass for all three cases, we have

I1 = I2 = I3

So

T1 : T2 : T3 = 1 : 1 : 1
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Problem 2

Just as in the lecture notes, our rotating coordinate system is one fixed to the rotating earth at the
location of pendulum, with x pointing east, y pointing north, and z normal to the surface. So the
angular velocity vector in the rotating system is

~ωE = ωE (ŷ cosλ+ ẑ sinλ)

where ωE is the Earth’s angular velocity. Let us assume the bob of the pendulum is moving a
circular path with radius l sin θ in xy plane where l is the length of the pendulum. (Note that we
do not need to use an underline to indicate a coordinate representation because we express ~ωE in
terms of the other vectors ŷ and ẑ.) So the position vector of the bob is

~rE = l sin θ (cosωtx̂+ sinωtŷ)

where ω is the angular velocity of the bob moving a circular path. (Again, not the lack of under-
lines.) The Coriolis force is

~Fc = −2m ~ωE ×
d ~rE

dt
= −2mωE (0, cosλ, sinλ)× ω l sin θ (− sinωt, cosωt, 0)
= −2mωE ω l sin θ (− sinλ cosωt,− sinλ sinωt, cosλ sinωt)

The z component of Fc is

(Fc)z = −2mωE ω l sin θ cosλ sinωt

The average of (Fc)z is

(Fc)z =
ω

2π

∫ 2π
ω

0
(Fc)z dt

= −2mωEωl sin θ cosλ
ω

2π

∫ 2π
ω

0
sinωtdt

= 0

The ratio of (Fc)z to gravity is

(Fc)z
mg

∼ ωEωl sin θ
g

∼ 2π
24× 60× 60

1
9.8

∼ 10−5

where we assume ωl sin θ ∼ O (1m/s) . So we see that (Fc)z is negligible in magnitude. The angular
velocity ω of the bob can be decomposed to ωT + Ω where ωT is the contribution from the tension
~T in the wire attaching to the bob and Ω from the Coriolis force. The tension ~T is

~T = T (cos θẑ − sin θ cosωtx̂− sin θ sinωtŷ)

First, we ignore the Coriolis force to calculate ωT , which means ω ≈ ωT .The vertical component of
the force acting on the bob is

T cos θ = mg

T =
mg

cos θ
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The component of ~T in xy plane generates the circular move of the bob and determines ωT by

T sin θ = mω2
T l sin θ

ωT =
√

g

l cos θ

Taking the Coriolis force into account, the component of ~T + ~Fc in xy plane similarly determines
ω = ωT + Ω by

|T (− sin θ cosωtx̂− sin θ sinωtŷ) + 2mωEωl sin θ (sinλ sinωtŷ + sinλ cosωtx̂)| = mω2l sin θ

sin θ (T − 2mωEωl sinλ) ≈ sin θ (T − 2mωEωT l sinλ) = ml (ωT + Ω)2 sin θ ≈ ml
(
ω2
T + 2ωTΩ

)
sin θ

mg

cos θ
− 2mωEωT l sinλ ≈ ml

( g

l cos θ
+ 2ωTΩ

)
Ω ≈ −ωE sinλ

where we discard terms of O(Ω2) in the second line.
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Problem 3

The four-wavevector in the emitter reference frame F is

kµ =
(
ω,~k

)
= 2πν (1, cos θ, 0, sin θ) = 2πν

(
1,

1
2
, 0,

√
3

2

)

assuming the light signal travels in xz plane. The Lorentz transformation matrix from F to F̃ is

Λµν =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1


where β = 4

5 , γ = 1q
1− 16

25

= 5
3 , and βγ = 4

3 . So the four-wavevector in the reference frame F̃ is

k̃µ = Λµνk
ν

=
(
γk0 + β γk1, γk1 + βγk0, k2, k3

)
= 2π ν (γ + β γ cos θ, γ cos θ + βγ, 0, sin θ)

= 2π ν

(
5
3

+
4
3

1
2
,
5
3

1
2

+
4
3
, 0,

√
3

2

)

= 2π ν

(
7
3
,
13
6
, 0,

√
3

2

)

= 2π
(

7
3
ν

)(
1,

13
14
, 0,

3
√

3
14

)

where you can see that k̃µk̃µ = 0 as a check for our algebra. So the light signal propagates with
the frequency ν̃ = νγ (β cos θ + 1) = 7

3 ν in a direction that makes an angle θ̃ with the x̃ axis of

tan θ̃ =
sin θ

γ (cos θ + β)
=

3
√

3
13

One could have read the problem in such a way as to think that the emitter was moving in
the −x-direction toward the origin when emitting the above light. The problem was, admittedly,
confusingly phrased. We will accept such a solution if it is correct. The solution for that sign of β
is as follows. The form of the Lorentz transformation matrix is unchanged, it is simply the sign of
β that changes. So

k̃µ = Λµνk
ν

=
(
γk0 + β γk1, γk1 + βγk0, k2, k3

)
= 2π ν (γ + β γ cos θ, γ cos θ + βγ, 0, sin θ)

= 2π ν

(
5
3
− 4

3
1
2
,
5
3

1
2
− 4

3
, 0,

√
3

2

)

= 2π ν

(
1,−1

2
, 0,

√
3

2

)
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Remarkably, we find clearly that the frequency is unchanged. The photon now makes an angle with
the +x-axis of

tan θ̃ =
sin θ

γ (cos θ + β)
= −

√
3

which implies θ̃ = 120◦. This somewhat surprising result can be understood in a couple of ways:

• Mathematically, the require ν̃ = ν yields an equation with more than solution. Specifically:

ν̃ = ν =⇒ γ (1 + β cos θ) = 1

There are two solutions to the above equation. The trivial one is β = 0, which gives γ = 1.
The other one can be found easily:

1 + β cos θ√
1− β2

= 1

(1 + β cos θ)2 = 1− β2

β2
(
1 + cos2 θ

)
+ 2β cos θ = 0

β = − 2 cos θ
1 + cos2 θ

or β = 0

The first solution yields β = −4
5 for cos θ = 1

2 as in our case. Now we see that the fact the
frequency is unchanged is an accident of the angle θ that was chosen; for some arbitrary θ,
one would obtain β 6= 4

5 , and thus this interpretation of the geometry of the problem would
not have yielded ν̃ = ν.

• The intuitive explanation is simply that the doppler shift and the length contraction cancel.
Length contraction, which doesn’t care about the direction of motion, tells us that the appar-
ent wavelength λ̃ will be smaller than the wavelength in the emitter frame λ. But Doppler
shift arises because the emitter is moving between the time that he emits the crests of the
wave. In this case, the emitter is moving in the opposite direction as the wave emission. This
results in the events corresponding to the emission of peaks being separate in F̃ , thereby
stretching the wavelength. The length contraction and the Doppler stretching cancel each
other out for this particular choice of θ and β. One can see from the mathematical expla-
nation above that, for any choice of θ, there is one β that yields this effect. Note that β
always has the opposite since as cos θ, meaning that the emitter must always be traveling in
a direction opposite to the light (in the emitter’s rest frame); this makes sense, as it is the
condition that there be Doppler stretching of the wavelength. One could work all this out
quantitatively using space-time diagrams, but it must yield the same results as the simple
Lorentz transformation executed above.

But the fact that ν̃ = ν for this particular choice of θ and β is not important to the problem;
for a different θ one would have obtained some ν̃ 6= ν for β = −4

3 , or for a different (negative) β
one would have also obtained ν̃ 6= ν for θ = 60◦.
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Problem 4

The center of mass of the top remains fixed except for the z motion. So the kinetic energy is

T =
1
2
I1

(
·
θ
2

+
·
φ

2

sin2 θ

)
+

1
2
I3

(
·
ψ +

·
φ cos θ

)2

+
1
2
M

·
z
2

where the first line is the kinetic energy in the center of mass frame and 1
2M

·
z
2

is the kinetic energy
for the center of mass. Unlike the case for the fix top, we have I1 in T instead of I1d since the
kinetic energy is relative to the center of mass in our case while the kinetic energy is relative to the
pivot point for the fix top. And, what is more, z can be related to θ by

z = l cos θ

So we have for the kinetic energy

T =
1
2
I1

(
·
θ
2

+
·
φ

2

sin2 θ

)
+

1
2
I3

(
·
ψ +

·
φ cos θ

)2

+
1
2
Ml2 sin2 θ

·
θ
2

Just like the fix top, the potential energy is

U = Mgl cos θ

where we discarded the constant term. The Lagrangian is

L = T − U

=
1
2
I1

·
φ

2

sin2 θ +
1
2
I3

(
·
ψ +

·
φ cos θ

)2

+
1
2
(
Ml2 sin2 θ + I1

) ·
θ
2

−Mgl cos θ

ψ and φ’s canonical momenta, pψ and pφ, are same as these in the case for a fix top and are also
conserved. So pψ and pφ are

pψ = I3

(
·
ψ +

·
φ cos θ

)
pφ = I1

·
φ sin2 θ + I3

(
·
ψ +

·
φ cos θ

)
cos θ

The EOM for θ is different and is given by

d

dt

((
Ml2 sin2 θ + I1

) ·
θ

)
− ∂

∂θ

(
1
2
I1

·
φ

2

sin2 θ +
1
2
I3

(
·
ψ +

·
φ cos θ

)2

+
1
2
Ml2 sin2 θ

·
θ
2

−Mgl cos θ

)
= 0

d

dt

((
Ml2 sin2 θ + I1

) ·
θ

)
− ∂

∂θ

(
( pφ − pψ cos θ)2

2I1
+
p2
ψ

2I3

)
−Ml2 sin θ cos θ

·
θ
2

−Mgl sin θ = 0
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Problem 5

The effective potential is

Veff (θ) =
1

2I1d

(pφ − pψ cos θ)2

sin2 θ
+Mgl cos θ

where pφ = pψ for a ”sleeping” mode. In order to get the frequency of small oscillations around
θ = 0, we need to Taylor expand Veff (θ) at θ = 0. So we have for a ”sleeping” mode

Veff (θ) =
p2
φ

2I1d

(1− cos θ)2

sin2 θ
+Mgl cos θ

≈
p2
φ

2I1d

(
θ2

2 +O(θ4)
)2

(
θ − θ3

6 +O(θ4)
)2 +Mgl

(
1− θ2

2
+O(θ4)

)

≈
p2
φ

2I1d

θ4

4 +O(θ6)

θ2 − θ4

3 +O(θ5)
+Mgl

(
1− θ2

2
+O(θ4)

)

≈
p2
φ

2I1d

θ2

4 +O(θ4)

1− θ2

3 +O(θ3)
+Mgl

(
1− θ2

2
+O(θ4)

)
≈

p2
φ

2I1d

θ2

4
+Mgl

(
1− θ2

2

)
+O(θ4)

≈ θ2

(
p2
φ

8I1d
− Mgl

2

)
+Mgl +O(θ4)

The EOM is

I1d
··
θ + θ

(
p2
φ

4I1d
−Mgl

)
≈ 0

So the frequency is

ω =

√√√√ p2φ
4I1d

−Mgl

I1d
=

√
p2
φ

4I2
1d

− Mgl

I1d
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Problem 6

In the instantaneous rest frame of the rocket, the four-momentum for the rocket is

m (1, 0)

at t = 0 assuming the rocket travels along +x-axis. After the rocket expels gases of mass ∆m at
t = ∆t, the four-momentum for the rocket and the exhaust gases are respectively

Rocket: γdv (m+ dm) (1, dv, 0, 0)
Gasses: γa∆m (1,−a, 0, 0)

where γdv = 1√
1−dv2 , γa = 1√

1−a2
and dv is the velocity of the rocket in F at t = ∆t. And we also

have

dm = −αdt
∆m = −dm− κ

The conservation of four-momentum gives us

m (1, 0, 0, 0) = γdv (m+ dm) (1, dv, 0, 0) + γa (−dm− κ) (1,−a, 0, 0)

which yields

m = γdv (m+ dm) + γa (−dm− κ) ≈ (m+ dm) + γa (−dm− κ)
0 = γdv (m+ dm) dv − γa (−dm− κ) a ≈ mdv − γa (−dm− κ) a

where we have dropped the second order terms, dv2 and dmdv. The first line leads to

dm = γa (dm+ κ)

Plugging it into the second line, we have

mdv = −γa (dm+ κ) a = −adm

When the rocket picks up dv in F , the velocity of the rocket in F̃ becomes

ṽ + dṽ =
dv + ṽ

1 + dvṽ

ṽ + dṽ ≈ (dv + ṽ) (1− ṽdv) ≈ ṽ +
(
1− ṽ2

)
dv

dṽ =
(
1− ṽ2

)
dv

So we get

dṽ

1− ṽ2
= −adm

m

m
dṽ

dm
+ a

(
1− ṽ2

)
= 0
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Problem 7

The initial conditions for ω1, ω2 and ω3 at t = 0 are

ω1(0) = Ω cosα
ω2(0) = 0
ω3(0) = Ω sinα

Euler’s equations yield

I1
d

dt
ω1 = ω2ω3 (I2 − I3)

I2
d

dt
ω2 = ω1ω3 (I3 − I1)

I3
d

dt
ω3 = ω1ω2 (I1 − I2)

Taking I1
I2

= cos 2α and I3 = I1 + I2 into account, Euler’s equations become

d

dt
ω1 = −ω2ω3 (1)

d

dt
ω2 = ω1ω3 (2)

d

dt
ω3 = ω1ω2

(
I1 − I2
I1 + I2

)
= ω1ω2

cos 2α− 1
1 + cos 2α

= −ω1ω2 tan2 α (3)

ω1×Eq.(1)+ω2Eq.(2) gives us

d

dt

(
ω2

1 + ω2
2

)
= 0

⇒ ω2
1 (t) + ω2

2 (t) = Ω2 cos2 α

⇒ ω2
1 (t) = Ω2 cos2 α− ω2

2 (t)

⇒ ω1 (t) =
√

Ω2 cos2 α− ω2
2 (t) (4)

ω2 tan2 α×Eq.(1)+ω3Eq.(3) gives us

d

dt

(
ω2

2 tan2 α+ ω2
3

)
= 0

⇒ ω2
2 (t) tan2 α+ ω2

3(t) = Ω2 sin2 α

⇒ ω2
3(t) = Ω2 sin2 α− ω2

2 (t) tan2 α

⇒ ω3(t) = tanα
√

Ω2 cos2 α− ω2
2 (t) (5)
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Plugging Eq. (4) and Eq. (5) into Eq. (2), we have

d

dt
ω2 = tanα

(
Ω2 cos2 α− ω2

2 (t)
)

dω2

Ω2 cos2 α− ω2
2 (t)

= tanαdt

d ω2
Ωcosα

1− ω2
2(t)

Ω2 cos2 α

= Ωsinαdt

∫ ω2(t)
Ω cos α

0

du

1− u2
= Ωsinα

∫ t

0
dt

tanh−1 ω2 (t)
Ω cosα

= Ωt sinα

ω2 (t) = Ω cosα tanh (Ωt sinα)

and

ω1 (t) = Ω cosα
√

1− tanh2 (Ωt sinα) =
Ω cosα

cosh (Ωt sinα)

ω3(t) = Ω sinα
√

1− tanh2 (Ωt sinα) =
Ω sinα

cosh (Ωt sinα)
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