
Physics 106a/196a – Problem Set 1 – Due Oct 6, 2006

v. 2: updated Oct 1, 2006

These problems cover the material on Newtonian mechanics and gravitation in Sections 1.1 and 1.2
of the lecture notes. Problems 1, 2 are for 106a students only, 3-6 for 106a and 196a students, and
7, 8 for 196a students only. Problem sets will typically only have 4 problems, but this is relatively
easy review material.

However, 106a students ought to be able to do problems 7 and 8 – they’re not too hard, I just
didn’t want to overload you. If you don’t have an idea of how to do them, you should look at the
solutions.

You are reminded that:

• The force exerted by a spring is F = −k (x− x0) where x is the length of the spring and x0

is the rest length of the spring; the force is opposite the displacement from the rest length.
In vector notation, ~F = −k (~r − ~r0).

• The potential energy function of a spring is U(x) = 1
2 k (x− x0)

2, or U(~r) = 1
2 k |~r − ~r0|2.

v. 2: Typo in Problem 5 fixed: was Fz = a x z = b z, should be Fz = a x y + b y.

1. (106a) Redo example 1.9 from the lecture notes (last item in Section 1.1.3) using forces –
i.e., find out if there is an equilibrium where the net force vanishes (including an equation
expressing that equilibrium height in terms of b, d, m1, and m2). Also, given m1, m2, and
d, find the condition on the length of the rope b for the equilibrium height to be a physically
allowed value. You may be tempted to calculate z̈2 in terms of z̈1 – are you sure you need it?

2. (106a) A particle of mass m moves according to the equations

x = x0 + a t2

y = b t3

z = c t

Find the angular momentum ~L at any time t. Find the force ~F and from it the torque ~N
acting on the particle. Verify that the torque gives the rate of change of angular momentum.

3. (106a/196a) A moving boat of mass m stops its engine and consequently is slowed by a
frictional force F (v). Its velocity is observed to decrease according to the formula

v = C (t− t1)
2

where C is a constant and t1 is the time at which it stops. If the initial speed is v0 at t = 0,
rewrite the above velocity equation in terms of v0. Find the force F (v) in terms of m, v0,
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t1 and v. Find the distance x that the boat travels between t = 0 and the time at which it
stops.

Rewrite the force in the generic form F = −k vα, relating k to m, v0, and t1. What are t1
and x in terms of k, m, and v0? In the example from class with F = −k v we saw that the
characteristic timescale to stop depended only on k and m, here we find dependence on v0

also. On dimensional grounds, why is this necessary?

4. (106a/196a) A particle of mass m moves under the influence of an isotropic spring, ~F (~r) =
−k ~r, or, equivalently,

Fx = −k x Fy = −k y Fz = −k z

Suppose the initial conditions are x(t = 0) = x0, y(t = 0) = y0, z(t = 0) = 0, ẋ(t = 0) = ẋ0,
ẏ(t = 0) = ẏ0, and ż(t = 0) = 0. Calculate the angular momentum of the mass.

5. (106a/196a) We explained in class that a conservative force is one for which the work done
in moving from one point to another is path-independent. It is equivalent to say that the
work done around a closed path vanishes. Stokes’ theorem relates the line integral of a vector
around a closed path to the integral of the curl of the vector over the area enclosed by that
path: ∮

C

~F · d~r =
∫

AC

d~a ·
(

~∇× ~F
)

Thus, any conservative force must have ~∇× ~F = 0 everywhere to ensure the left side vanishes
for an arbitrary loop C. Calculate the curl to determine which of the following force fields is
conservative. For any that are conservative, find the potential energy U(~r).

(a) Fx = a y z + b x + c, Fy = a x z + b z, Fz = a x y + b y

(b) Fx = −z e−x, Fy = log z, Fz = e−x + y
z

(c) F (~r) = ~h× ~r.

where a, b, c, and ~h are constants. You may find some of the relations provided in Appendix
A of the notes useful. This problem answers the question asked in the lecture notes, “Do
there exist position-dependent forces for which the work is not path-independent?” You can
construct them mathematically, but it’s hard to think of physical examples.

6. (106a/196a) Calculate the gravitational potential at off-axis points due to a thin circular ring
of radius a and mass M . Let R be the distance from the center of the ring to the field point,
and let θ be the angle between the line connecting the center of the ring with the field point
and the axis of the ring. Assume R � a so that terms of order (a/R)3 and higher may be
neglected. This is an excellent example of the use of Taylor expansions to obtain approximate
solutions, a techique we will use frequently. Note that you need to carry the expansion to
higher than first order in a/R!

7. (196a) A mass m is connected to the origin with a spring of constant k, whose length when
relaxed is l. The restoring force is very nearly proportional to the amount the spring has been
stretched or compressed so long as it is not stretched or compressed very far. However, when
the spring is compressed too far, the force increases very rapidly, so that it is impossible to
compress the spring to less than half its relaxed length. When the spring is stretched more
than about twice its relaxed length, it begins to weaken, and the restoring force becomes zero
when it is stretched to very great lengths.
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(a) Devise a force function F (x) that represents this behavior.

(b) Find the potential energy as a function of position, U(x). Describe the types of motion
that may occur (bounded, unbounded, are there stable and/or unstable equilibria, etc.).

To make (b) easy, you should choose a force function in (a) that is as easy to integrate as
possible.

8. (196a) Consider a massive body of arbitrary shape and a spherical surface completely outside
the body. Show that the average value of the gravitational potential on the sphere due to
the mass is equal to the value of the potential that would exist on the surface of the sphere
if all the mass of the body were concentrated at the center of the sphere. Hint: 1) One way
of doing this problem requires essentially no calculation, just a clever argument. 2) Another
way of doing this problem involves a technique similar to that used for proving Newton’s Iron
Sphere Theorem.
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