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Let’s do the hardest one of these integrals more explicitly to be clear about it:
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You can do this integral by a trigonometric substitution (which is essentially the same as switching
to ellipsoidal coordinates as is done in the alternate solution given a couple pages below), look up
this integral (e.g., http://www.sosmath.com/tables/integral/integ13/integ13.html), or have Math-
ematica do it. Looking it up gives
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So we have in the end
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Problem 2

We assume ẑ along the bar in the body frame F and ẑ′ along ~ω in the body frame F ′. At t = 0, x̂
is along x̂′ and the bar stays in the y′z′ plane. The angular velocity is

~ω = ẑ′
v

l
2 sin θ

(Note: no underline or prime symbol is needed on ~ω in the above because it is being written in terms
of another vector: the above equation holds in any frame. The components of ẑ′ of course depend
on the frame: in F ′, the coordinate representation of ẑ′ is (0, 0, 1); in F , as we indicate below, ẑ′ has
coordinate representation (0, sin θ, cos θ). Similary, if we had written ~ω out in component form, as(

0, 0, v
l
2

sin θ

)
, then we would have had to specify a representation using the underline and prime.

These are subtle distinctions but ones that are importnat to understand.) The decomposition for
ẑ′ is

ẑ′ = ŷ sin θ + ẑ cos θ

since ~ω always stays in the yz plane. So we have

~ω =
2v

l sin θ
(ŷ sin θ + ẑ cos θ)

(Refer above to why no underline is needed.) The representation of the torque in F is given by the
Euler’s equation by
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(The underlines were needed in the torque equation because the underlines imply whether the time
derivative is with respect to the space or body frame. Underlines were needed in the equation for
L because now one is writing the components.) The components of ~L are constant, so the time
derivative vanishes. In vector form, it holds that

~L = ml v ŷ

Understand, again, that now we need not use underlines because ~L is being written in terms of
another vector, not in component form (0,m l v, 0). We are left with

−→τ = ~ω ×
−→
L = −x̂2v cos θ

l sin θ
mlv = −x̂2mv2 cos θ

sin θ

In the above, we no longer need underlines because there is no longer a frame-dependent time
derivative. For x̂, we get

x̂ = x̂′ cosωt+ ŷ′ sinωt

= x̂′ cos
(

2vt
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)
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(
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)
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and therefore
−→τ = −2mv2 cos θ
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Again, because ~τ is being written in terms of other vectors, no underlines or primes are needed. Of
course, the coefficients of x̂′ and ŷ′ are the components of the F ′ representation, so it’s easy to see
what you would write down for ~τ ′:
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We can also to calculate −→τ ′ from first principles. First we need to obtain I ′ first. The coordinates
for two mass points in F ′ are
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where we had to use underlines and primes in the first line above because of the time derivative.
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ψ̇ is just the rotation speed of the earth. But, be careful, it does not correspond simply to the
length of the solar day; recall that the sidereal day, the length of time needed for the earth to
complete one rotation relative to the fixed stars, is 23.9344696 hours or 86164.1 seconds, so

ψ̇ =
2π

86164.1sec
= 7.29212 × 10−5 rad/sec

We want to express time in units of 1/Ω, so we note that, from Equation (8.116),

Ω =
√

12.446 × 10−14 rad/sec2 = 3.52789 × 10−7 rad/sec

Next, we want to calculate angular momenta, so we will need the ratio I3/I1. The problem gives
ε = 1

305.8 where ε ≡ I3−I1
I1

as defined on p. 321 just above Equation (8.118). This value of ε is, for
unknown reasons, different than the value given in the same place as ε is defined on p. 321, which
is ε = 0.00335281 = 298.3. We blindly use the value given in the problem. This implies

I3
I1

= 1 + ε = 1.00327

Next, we want Lz. Formally, Lz = I3

(
ψ̇ + φ̇ cos θ

)
. Since φ̇/ψ̇ = O(107), we can ignore φ̇ given

the precision we are aiming for in the result (6 significant digits, or 1 part in 106). So we have
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simply

L3 ≈
I3ψ̇

I1 Ω
= 1.00327 · 7.29212 × 10−5 rad/sec

3.52789 × 10−7 rad/sec
= 207.38

This differs from Hand and Finch’s result, we believe their result is incorrect. Next, we want Lz,
which is formally Lz = I1 φ̇

2 sin2 θ + L3 cos θ. Again, though, φ̇ is small compared ψ̇, and I1 ≈ I3,
so we can drop the first term, leaving

Lz = L3 cos θ = 207.38 · cos 23.45◦ = 190.247

which, again is different from the result given in Hand and Finch. They do seem to be using the
same θ, though, because the ratio Lz/L3 = cos θ = 0.9174 for both our result and theirs. Finally,
we want to calculate E′

min. Since Lz = L3 cos θ = L3 u to very good approximate, and u̇ = 0 by
definition of what is mean by E′

min, it holds that the first term in E′ vanishes for E′ = E′
min. So

we have

E′
min =

ε

4
(
1− 3u2

)
= −0.00124666

which is exactly a factor of 2 smaller than the result given in Hand and Finch because of their
factor of 2 error in the expression for the second term.

where one would insert the numerical values E′ = 10, L3 = 207.38, and Lz = 190.247 and integrate
numerically over u to obtain τ .
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Problem 4

One can do this problem in two ways. The first uses the instantaneous point of contact of the
coin with the floor as the origin of the rotating coordinate system. The second uses the CM. We
explicitly write out the first version, then describe why the second version yields the same result.

(a) The angular velocity of the coin is

~ω = ωp ẑ
′ + Ω ẑ

There are two ways to see what the condition of rolling without slipping implies. The first is
by analogy to Problem 4 from Problem Set 9, the cone rolling on the plane. There, we related
the path length that the edge of the cone must travel for a single period τ of the precession
motion. Applied here, let τ again be the precession period, τ = 2 π

ωp
. The circumference of the

circle that the edge of the coin travels on is 2π R cos θ. Rolling without slipping implies that
ψ angle of the coin must rotate through an angle 2π 2 π R cos θ

2 π R in this time τ . So Ω, which is
given by ψ̇, is just 2 π

τ
2 π R cos θ

2 π R = ωp cos θ. One can see empirically that a negative sign is
needed because ψ rotates backward if the precession is forward in angle, so really

Ω = −ωp cos θ

(b) The FP systems is defined to precess with the coin’s 3-axis but not spin with it. Therefore, ẑ′

always stays in the yP zP plane and can be decomposed into

ẑ′ = ẑP cos θ − ŷP sin θ

The angular velocity of the coin is

~ω = ωpẑ
′ + ΩẑP

= ωp (ẑP cos θ − ŷP sin θ) + ΩẑP
= −ŷPωp sin θ

(c) In FP , the new moment of inertia tensor relative to the point on the edge of the coin contact
with the surface is

I d = I +M
(
l21−~l ~l T

)
=

1
4MR2 0 0

0 1
4MR2 0

0 0 1
2MR2

 +M

R2 0 0
0 0 0
0 0 R2


=

5
4MR2 0 0

0 1
4MR2 0

0 0 3
2MR2


where ~l = RŷP . So the angular the momentum is

~LP = I d ~ω = −1
4
MR2ωp sin θ

0
1
0

 = −1
4
MR2ωp sin θŷP
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For the torque, we have three forces acting: the force of gravity acting at the CM of the
coin, the normal force acting at the edge of the coin, and the frictional force that enforces
rolling without slipping, also at the edge of the coin. The latter two act at the origin of our
coordinate system, the point of contact with the floor, so they yield no torque. So the torque
is simply

~τP = ~rP × ~FP

= MgR cos θ x̂P

where ~rP = −RŷP and ~FP = −Mg (ẑP cos θ − ŷP sin θ) . In FP , Euler’s equations are

d

dt
~LP = −~ωP × ~LP + ~τP

From our expression for ~LP above, we see that it is constant. So Euler’s equations reduce to

~τP = ~ωP × ~LP

MgR cos θ x̂P = ωpẑ
′ ×

(
−1

4
MR2ωp sin θŷP

)
MgR cos θ x̂P = ωp (ẑP cos θ − ŷP sin θ)×

(
−1

4
MR2ωp sin θ ŷP

)
MgR x̂P =

1
4
MR2ω2

p sin θ x̂P

ωp = 2
√

g

R sin θ

We note that one can solve the problem in an alternate fashion. We chose the point of contact
between the coin and the floor as the origin of our coordinate system, so the only torque was due
to gravity. Alternatively, we can place the origin of the coordinate system at the center of mass.
These coordinate systems are the same except for a displacement ~l = R ŷP . The angular velocity
is unaffected since the new FP coordinate system orientation is the same as the one used above.
The angular momentum is also unaffected because it depends only on the y moment of inertia,
which we saw above is the same for the CM and the displaced versions of the inertia tensor. The
only other change we need to worry about is in torque. In the case with the origin at the CM, the
gravitational torque is zero, but we will instead have a normal force torque and a frictional torque.
We may neglect the frictional torque because it acts along the ẑ axis and is simply the force that
causes rolling without slipping. The normal force torque is identical to the gravity torque in the
above because both the radius vector and the force have sign flips. So the angular velocity, angular
momentum, and torque is the unchanged in spite of the change of origin, so the solution for ωp will
be unchanged also.
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Problem 5
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Problem 6

A solution for this will be written shortly.
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