
Physics 106a/196a – Problem Set 2 – Due Oct 13, 2006

Solutions

Peng Wang

Problem 1

By symmetry, the center of the mass of the wire must be at xx̂. The mass contribution of an
infinitesimal arc dφ is

dm =
m

aθ
adφ =

m

θ
dφ (1)

So we have

x =
1
m

∫
xdm (2)

=
1
m

∫ θ
2

− θ
2

a cosφ
m

θ
dφ

=
a

θ
sinφ |

θ
2

− θ
2

=
2a
θ

sin
θ

2

= a
sin θ

2
θ
2

where we see when θ → 0, we get x = a as expected.

Problem 2

We use the formula on Page 41 of the lecture notes

v = v0 − gt+ u log
m0

m
(3)

In this problem, the craft hovers over the moon’s surface and thereby the initial speed v0 and final
speed v are both zero. So we have

t =
u

gMoon
log

m0

m
(4)

=
1500m/s
9.8
6 m/s

2
log

3
2

= 372.4s

Let us also derive the solution from scratch to show that it’s not just a matter of finding the right
equation from the lecture notes (a habit that should be discouraged because it is too easy to forget
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to check that the assumptions made in deriving something in lecture are the same as in the problem
you are working on). We simply start with Newton’s second law:

dp

dt
= −mgMoon (5)

p(t+ dt)− p(t) = −mgMoon (6)
(m+ ṁ dt) (v + dv) + (−ṁ) (v − u)−mv = −mgMoon dt (7)

As usual, multiply out and keeping only first order terms:

mdv + ṁ u dt = −mgMoon dt (8)

Now, set v = 0 and dv = 0 because we know v is constant and zero throughout the problem. So
we have

ṁu dt = −mgMoon dt (9)

− u

gMoon

dm

m
= dt (10)

(11)

which can be integrated to obtain

u

gMoon
log

m0

m
= t (12)

(13)

which is the same as Eqn 4 above.

Problem 3

We choose the vertical coordinate of z wherein the origin is at the pivot and +z is upward.

• Before scoop picks up the sand: Energy is conserved during this period. Initially, the potential
energy of the scoop is

U0 = −m1gl cos
π

4
(14)

And the potential energy of the scoop just before picking up the sand is

U1 = −m1gl (15)

Conservation of energy gives us

U0 = U1 +
1
2
m1v

2
0 (16)

−m1gl cos
π

4
= −m1gl +

1
2
m1v

2
0 (17)

v0 =

√√√√2gl

(
1−

√
2

2

)
(18)

where v0 is the scoop’s speed just before picking up the sand.
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• At the moment of picking up the sand: At this time, the angular momentum of the system of
the arm, the scoop and the sand relative to the pivot is conserved because the only external
force except the gravity acting on the system exerts at the pivot and therefore the correspond-
ing external torque vanishes. As for the gravity, its torque is zero since the position vector
pointing from the pivot to the scoop and the sand is parallel to the vertical. Note that you
do not need to include some sort of force acting between the sand and scoop at the instant of
contact – we showed in lecture that the total system linear momentum and angular momentum
are affected only by external forces and torques. One has to be careful not to overthink the
problem. Before the picking up, the magnitude of the angular momentum of the system is∣∣∣−→L i

∣∣∣ = ∣∣∣∣−−−→Lscoop
i +

−−−→
Larm

i +
−−−→
Lsand

i

∣∣∣∣ (19)

=
∣∣∣−−−→Lscoop

i

∣∣∣
= m1lv0

where
−−−→
Larm

i = 0 since the arm has negligible weight and
−−−→
Lsand

i = 0 since the initial velocity
of the sand is zero. After the picking up the sand, the magnitude of the angular momentum
of the system is ∣∣∣−→L f

∣∣∣ = ∣∣∣∣−−−→Lscoop
f +

−−−→
Larm

f +
−−−→
Lsand

f

∣∣∣∣ (20)

=
∣∣∣∣−−−→Lscoop

f +
−−−→
Lsand

f

∣∣∣∣
= m1lv1 +m2lv1

where
−−−→
Larm

f = 0. Conservation of angular momentum gives us∣∣∣−→L i

∣∣∣ = ∣∣∣−→L f

∣∣∣ (21)

m1lv0 = m1lv1 +m2lv1 (22)

v1 =
m1

m1 +m2
v0 (23)

One could have done the above with linear momentum and forces instead of angular momen-
tum and torques, similar equations would have appeared without the l factors.

Another way of seeing that it is momentum, and not energy, that is conserved in the collision
of the scoop with the sand is to consider both energy and momentum conservation, making
use of the fact that the velocity of the sand and scoop are the same after the collision:

m1v0 = (m1 +m2) v1 (24)
m1

2
v2
0 =

m1 +m2

2
v2
1 (25)

which imply

v1
v0

=
m1

m1 +m2

v1
v0

=
√

m1

m1 +m2
(26)

Clearly, only one of the two equations can be true. You know it’s possible to dissipate heat
in such a collision and thereby lose mechanical energy, so one has to discard the conservation
of energy equation. Note that this proof is general – any time you have a moving object hit
and stick to an item at rest and the two move off together, the collision must be inelastic.
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• After scoop picks up the sand: Conservation of energy applies here. Just after picking up the
sand, the energy of the system is

E2 = −(m1 +m2)gl +
1
2
(m1 +m2)v2

1 (27)

Assume the arm of the scoop rises to the angle θ with the vertical, where the velocity of the
scoop and the sand is zero and the total energy of the system is

E3 = −(m1 +m2)gl cos θ (28)

So conservation of energy gives us

E3 = E2 (29)

−(m1 +m2)gl +
1
2
(m1 +m2)v2

1 = −(m1 +m2)gl cos θ (30)

cos θ = 1− 1
2
v2
1

gl
(31)

cos θ = 1−
(

m1

m1 +m2

)2
(

1−
√

2
2

)
(32)

We also notice our final result can be written as

1− cos θ
1− cos θ0

=
(

m1

m1 +m2

)2

(33)

where θ0 is the angle at which the scoop is initially lifted, namely π
4 . When m2 is zero, θ = θ0

since no energy is lost at the pick up.

Problem 4

We choose the vertical coordinate of z wherein the origin is at the top of the cylinder and +z is
upward. Let α be a parameter that describes the position along the rope, 0 ≤ α ≤ b, where b is
the length of the rope, α = 0 at the end that is attached to the top of the cylinder. The z position
of the rope as a function of the the parameter α is

z(α, φ) =
{
−R(1− cos α

R) 0 ≤ α ≤ Rθ
−R(1− cos θ)− (α−Rθ) sin θ Rθ ≤ α ≤ b

(34)

where α
R gives the angle of the position α with the vertical before the cutoff point between the two

forms where the rope begins to unwind off the cylinder and which occurs for α such that the angle
α
R of the position is θ by geometry. So the potential energy is

U(θ) =
∫ b

Rθ
dαλg [−R(1− cos θ)− (α−Rθ) sin θ ] +

∫ Rθ

0
dαλg

[
−R(1− cos

α

R
)
]

(35)

−mg [R(1− cos θ) + (b−Rθ) sin θ]

= λg

[
−R(1− cos θ)(b−Rθ)−

(
b2 − (Rθ)2

2
−Rθ(b−Rθ)

)
sin θ

]
+ λg [−R(Rθ −R sin θ)]−mg [R(1− cos θ) + (b−Rθ) sin θ]

= −λg(b−Rθ)
[
R(1− cos θ) +

b−Rθ

2
sin θ

]
− λgR2(θ − sin θ)

−mg [R(1− cos θ) + (b−Rθ) sin θ]
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The kinetic energy is the sum of the kinetic energies of the rotating rope and the particle

K(θ) =
∫ b

Rθ
dα

1
2
λ
[
(α−Rθ)

.
θ
]2

+
1
2
m (b−Rθ)2

.
θ
2

(36)

=
1
6
λ (b−Rθ)3

.
θ
2
+

1
2
m (b−Rθ)2

.
θ
2

The total kinetic and potential energy of the system as a function of θ and
.
θ is

U(θ) +K(θ) (37)

= −λg(b−Rθ)
[
R(1− cos θ) +

b−Rθ

2
sin θ

]
− λgR2(θ − sin θ)

−mg [R(1− cos θ) + (b−Rθ) sin θ] +
1
6
λ (b−Rθ)3

.
θ
2
+

1
2
m (b−Rθ)2

.
θ
2

Problem 5

• Since the magnetic field is perpendicular to the plane in which a charged particle of mass m
travels, it will travel along a circle with radius R. So we have

qvB =
mv2

R
(38)

=⇒ p = mv =
qB

1/R
(39)

where v and q are the velocity and the electric charge of the charged particle, respectively,
and 1/R is the track curvature. Eq. (39) relates the momentum of the charged particle to the
track curvature directly. In order to get the velocity of the charged particle, we need know
its mass m.

• Some notation:

m1 = mass of the proton
m2 = mass of the nucleus

−→p 1,i,
−→p 1,f = initial and final momentums of the proton in lab system
−→p 2 = final momentums of the nucleus

ψ1 = deflection angle of the proton ( cosψ1 =
−→p 1,i · −→p 1,f

p1,ip1,f
)

Conservation of linear momentum yields
−→p 1,i = −→p 1,f +−→p 2 (40)
−→p 2 = −→p 1,i −−→p 1,f (41)

p2
2 = p2

1,i + p2
1,f − 2−→p 1,i · −→p 1,f (42)

p2
2 = p2

1,i + p2
1,f − 2p1,ip1,f cosψ1 (43)

While conservation of kinetic energy gives us

p2
1,i

2m1
=

p2
2

2m2
+
p2
1,f

2m1
(44)

m2 = m1
p2
2

p2
1,i − p2

1,f

(45)
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Plugging Eq. (43) into the above equation yields

m2 = m1

p2
1,i + p2

1,f − 2p1,ip1,f cosψ1

p2
1,i − p2

1,f

(46)

= m1

1 +
p2
1,f

p2
1,i
− 2p1,ip1,f

p2
1,i

cosψ1

1− p2
1,f

p2
1,i

= m1
1 + α2 − 2α cosψ1

1− α2

• Alternative solution: We start with the equation from the lecture notes

T1

T0
=

m2
1

(m1 +m2)
2

[
cosψ1 +

√
m2

2

m2
1

− sinψ1

]2

(47)

where we pick up the plus sign since m1 < m2 (must notice that the problem says m2 is a
nucleus, and all nuclei are heavier than a proton). We then have

(m1 +m2)
2

m2
1

T1

T0
=

[
cosψ1 +

√
m2

2

m2
1

− sinψ1

]2

(48)

m1 +m2

m1

√
T1

T0
= cosψ1 +

√
m2

2

m2
1

− sinψ1 (49)

(1 + r)α = cosψ1 +
√
r2 − sinψ1 (50)

r2 − sinψ1 = ((1 + r)α− cosψ1)
2 (51)

r2
(
1− α2

)
+ 2rα (cosψ1 − α) +

(
−α2 + 2α cosψ1 − 1

)
= 0 (52)

where r ≡ m2
m1 and

√
T1
T0

= α. Solving Eq. (52) yields

r =
α (α− cosψ1)± |α cosψ1 − 1|

1− α2
(53)

=
α (α− cosψ1)± (1− α cosψ1)

1− α2

=
α2 − 2α cosψ1 + 1

1− α2
or

α2 − 1
1− α2

where we use |α cosψ1| < 1 in the second line. Since |α| < 1 and r > 0 , the second solution
is unphysical. So we have

m2 = m1
1 + α2 − 2α cosψ1

1− α2
(54)

Problem 6

We consider a system of particles in an inertial frame S1 in which the position of particle a is −→r a

and the total torque on it is

−→
N =

∑
a

−→r a ×

−→F (e)
a +

∑
b6=a

−→
f ab

 (55)
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Assume there is another inertial frame S2 travelling with the velocity −→v relative to S1. So in S2

the position of particle a is
−→r ′

a = −→r a +−→v t+
−→
R (56)

where
−→
R is a constant vector. And the total torque in S2 is

−→
N ′ =

∑
a

−→r ′
a ×

−→F (e)
a +

∑
b6=a

−→
f ab

 (57)

=
∑

a

(−→r a +−→v t+
−→
R
)
×

−→F (e)
a +

∑
b6=a

−→
f ab


=
∑

a

−→r a ×

−→F (e)
a +

∑
b6=a

−→
f ab

+
(−→v t+

−→
R
)
×
∑

a

−→F (e)
a +

∑
b6=a

−→
f ab


=
∑

a

−→r a ×

−→F (e)
a +

∑
b6=a

−→
f ab

 =
−→
N

where
∑

a

−→
F

(e)
a = 0 since the total force is zero and

∑
a,b,b6=a

−→
f ab = 0 due to the weak form of Newton’s

second law. So the total torque is independent of which inertial frame it is calculated in.

Problem 7

• Since the scattering is isotropic in the center-of-mass frame, the probability of the particles
entering a solid angle element dΩ is proportional to dΩ

4π ,i.e. equal to dΩ. The distribution with
respect the angle θ is obtained by putting dΩ = 2π sin θdθ,i.e. the corresponding probability
is

dP = P (θ)dθ =
1
2

sin θdθ = −1
2
d cos θ (58)

From the lecture notes, we have
T1

T0
= 1− 2m1m2

(m1 +m2)
2 (1− cos θ) (59)

T2

T0
=

2m1m2

(m1 +m2)
2 (1− cos θ) (60)

which yields

dT1

T0
= d

(
T1

T0

)
=

2m1m2

(m1 +m2)
2 (d cos θ) = − 4m1m2

(m1 +m2)
2dP (61)

dT2

T0
= d

(
T2

T0

)
=

2m1m2

(m1 +m2)
2 (−d cos θ) = − 4m1m2

(m1 +m2)
2dP (62)

The distribution Pi(i = 1, 2) of Ti(i = 1, 2) is Pi =
∣∣∣ dP
dTi

∣∣∣ so we get

P1 =
1

2m1v
′
1V

(63)

=
(m1 +m2)

2

4m2m1T0
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P2 =
1

2m2v
′
2V

(64)

=
(m1 +m2)

2

4m1m2T0

• Alternative solution: Squaring the equations

−→v i = −→v ′
i +

−→
V i = 1, 2 (65)

where −→v i is final velocity of particle i in lab system, −→v ′
i is final velocity of particle i in cm

system and
−→
V is velocity of cm system with respect to lab system, we have

v2
i = v′2i + V 2 + 2v

′
iV cos θ (66)

Since
∣∣∣−→v ′

i

∣∣∣ and
∣∣∣−→V ∣∣∣ are constant, we have

d
(
v2
i

)
= 2v

′
iV d (cos θ) (67)

d (cos θ) =
d
(
v2
i

)
2v′

iV
=

dTi

miv
′
iV

(68)

where Ti = 1
2miv

2
i is the final state kinetic energy of particle i in the lab frame. Substituting

Eq. (68) in Eq. (58), the distribution Pi of Ti is

PidTi =
dTi

2miv
′
iV

(69)

where

V = v′2 =
m1u1

m1 +m2
=
m1

√
2T0
m1

m1 +m2
=
√

2m1T0

m1 +m2
(70)

v′1 =
m2u1

m1 +m2
=
m2

√
2T0
m1

m1 +m2
=

m2

√
2m1T0

m1 (m1 +m2)
(71)

So we have

P1 =
1

2m1v
′
1V

(72)

=
(m1 +m2)

2

4m2m1T0

P2 =
1

2m2v
′
2V

(73)

=
(m1 +m2)

2

4m1m2T0
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