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Version 2: Correction of equation for ṗθ, had extra power of r in denominator (p. 4 of soln set).

Problem 1
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The constraint equations are

Gp =
√

(xp − xb)
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2 − l

Gb = yb

where l is the length of the pendulum. The resulting Euler-Lagrange equations are
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We do not ask you to solve for the accelerations in this problem because the equations are more
complicated than in the Midterm Exam Problem 4. In that case, because the constraint and the
potential energy were linear in the coordinates, the equations of motion ended up being linear in
the accelerations and the Lagrange multipliers with the coordinates not appearing. The linearity
guaranteed that an algebraic solution for the accelerations and Lagrange multipliers was possible.
(If you wrote the constraint in a nonlinear way, the coordinates would appear in the equations
of motion, but, since those equations of motion would have to be equivalent to a set in which
the coordinates do not appear, the existence of an algebraic solution remained guaranteed.) In
this case, the nonlinearity of the constraint (no matter what way it is written) ruins that, giving
equations of motion with both the acceleration and the coordinate. These are differential equations
that require more complicated means of solution. There may still be an algebraic solution, but it
is no longer guaranteed. The same difficulty would have occurred if the potential energy had been
nonlinear in the coordinates.
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Problem 2

Problem 3

The Virial Theorem tells us that

〈T 〉 =
n

2
〈U〉 (1)

for potential energies that are power laws in the coordinate, U = k rn. For the harmonic oscillator,
n = 2, so

〈T 〉 = 〈U〉 (2)

The total energy is therefore

〈E〉 = 〈T + U〉 = 2〈T 〉 = 3N k Θ (3)

where N is the number of atoms, k is Boltzmann’s constant, and Θ is the temperature. The heat
capacity is then

C =
dE

dΘ
= 3N k (4)
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The Lagrangian is

L = T − U =
1
2

m
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
+

k

r
(5)

The canonical momenta are

pr = m ṙ pθ = m r2 θ̇ pφ = m r2 sin2 θ φ̇ (6)

The first is the radial linear momentum. The latter two are the angular momenta in the θ and φ
coordinates. The Hamiltonian is

H =
∑

k

pkq̇k − L (7)

= ṙ pr + θ̇ pθ + φ̇ pφ −
1
2

m
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
− k

r
(8)

=
p2

r

2 m
+

p2
θ

2 m r2
+

p2
φ

2 m r2 sin2θ
− k

r
(9)

where one uses the definitions of the canonical momenta to eliminate the generalized velocities ṙ, θ̇,
and φ̇ so that the Hamiltonian is written as a function of the coordinates and canonical momenta
only.

3



Note: ṗθ on this page corrected, 2006/12/03.
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The problem asked to make θ the second spatial coordinate, not φ. But it easy to see there is
no difference between the two cases. Instead of choosing the conserved angular momentum to be
along the z axis, we could have chosen the plane of the motion to correspond to a constant value
of φ, which we will call φ0, placing the conserved angular momentum in the xy plane at an angle
φ0 + π/2 from the x axis (up to a sign). Then we have

φ = φ0 pφ = 0 φ̇ = 0 (10)

Inserting these in the equations of motion, we obtain

ṗθ = 0 ṗr =
p2

θ

m r3
− k

r2
θ̇ =

pθ

m r2
ṙ =

pr

m
(11)

Thus, we obtain the same equations of motion but with φ replaced by θ everywhere. The rest of
the solution thus carries through.
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Problem 5

We check Poisson Bracket

[Q,P ]q,p =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

= −2i 6= 1

which implies the transformation is not canonical. We can choose (by trial and error, or by writing
P ′ = aq + ibp and then finding appropriate values of a and b to obtain the desired result)

Q′ = q + ip P ′ =
i

2
(q − ip)

so that [
Q′, P ′]

q,p
= 1

which means this transformation is canonical. Solve for p, P ′ in terms of q, Q′ (by simple algebra):

p =
Q′ − q

i
P ′ = i

(
q − Q′

2

)
The generating function F (q, Q′) therefore must satisfy

∂F

∂q
= p = i

(
q −Q′) ∂F

∂Q′ = −P = −i

(
q − Q′

2

)
which means the generating function could be

F
(
q, Q′) = i

(
q2

2
− qQ′ +

Q′2

4

)
One can obtain the above by integrating the partial derivatives, taking care with the terms that
depend on both q and Q.

Problem 6

See the following page for the solution. A small addendum: Though it was not specifically asked,
we note that the fact that the Jacobian determinant of a canonical transformation is 1 not only
implies that the transformation is invertible, but also that its inverse also has Jacobian determinant
1 and thus is also a canonical transformation.
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Problem 7

The potential energy is time independent so the Hamiltonian is

H =
p2

2m
− k

|x|
≡ E

and has constant value E. The particle is bound (and thus the system is periodic) when E < 0.
Therefore, we may find p = p(q, E):

p =

√
2m

(
E +

k

|x|

)
from which we see the particle oscillates between k

E and − k
E . The action variable is thus
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1
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∮
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1
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) ∫ − k
E

0

√
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1(−Ex
k

) d

(
−Ex

k

)

=
2
√

2m

π

k√
−E

∫ 1

0

√
−1 +

1
y

dy

=
2
√

2k

π

√
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π

2

= k

√
2m

−E

⇒ E = −2mk2

I2

where y = −Ex
k . Note that, even if you were unable to do the difficult integral above, it should be

clear that the integral is just a constant numerical multiplier because it no longer depends on any
of the parameters of the problem. One could just write it as α and leave it undefined, and obtain
the rest of the solution with α as a free parameter. A point or two would be deducted, but you
would reive most of the credit for the problem. This is a good example of moving on in a problem
if you get stuck on some part that is not relevant to the physics.

The oscillation period is

T = 2π

(
∂E

∂I

)−1

=
2πI3

4k2m

= πk

√
2m

−E3
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For completeness, we note that the last set of three equations are integrable equations for the
three functions Wr(r, ~α), Wθ(θ, ~α), and Wφ(φ, ~α) where ~α = (E,αθ, αφ) are constants set by initial
conditions. Another set of three equations for the canonical coordinates ~β are simply the partial
derivatives of the W functions (Equations 2.68 and 2.69 of the lecture notes):

t + β′
1 = β1 =

∂Wr(r, ~α)
∂E

βθ =
∂Wθ(θ, ~α)

∂αθ

βφ =
∂Wφ(φ, ~α)

∂αφ

The values of ~α and ~β are obtained from the initial conditions, and then we know that ~α, βθ, and
βφ are constant and β1 evolves linearly in time by dint of the canonical transformation generated
by the function S. If one inverts to write (r, θ, φ) and (pr, pθ, pφ) in terms of ~α and ~β, one thus has
the full solution to the equations of motion.
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