Physics 106a,/196a — Problem Set 7 — Due Dec 1, 2006
Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala

Version 3: January 15, 2007

Version 2: Less kludgey, more exhaustive solution for Problem 5. Version 3: Minor addition to
PS1 solution.
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Problem 2

At rest, the spring has a length [5. The coordinates of the two ends of the spring are

ls 1 . l
(2 + 3 sin 0, —3 cos 62)

I, 1 . l
<—2 + §s1n91, —3 00501)

with the origin chosen at the midpoint between the pivots of the two pendulums. And the velocities
of the two ends are

l S '
(2 cos 020, 5 sin 0292>
L cos 0161, Lsing,6
2COS 1 1,28111 101

The length of the spring in terms of 8; and 65 is

2 2
ls (01,02) = \/[ls + é (sinfy — sin@l)] + ZZ (cos @y — cos 02)2
~ g+ é (sinfy —sinfy) + O (94)

where we keep terms up to O (02) in the second line. Let a be a parameter that describes the
position along the spring, 0 < « < ls(61,62). The coordinates of the spring as a function of the
angles and the parameter « are

i (b +1 sm92) (1 - %) (% + Lsingy),
(01,92) ( g cosfa) + (1 M) (- écos 61)

_ 91,92 ls + é sinfy —sinfy)) + (— Es + gsinel) 7
= Ts (0?,02) (é (cos 1 — cos 92)) (—%cos 91)

and the velocity of the spring is

e 1 . | o ! .
INGED) (2 cos 9292> + (1 - 15(91’92)) <2 cos 0101> ,
« 1 . o 1. .
12(01.05) (2 51119292) + (1 — W) <2 Sln0101>

a (1, o I - ,

where in the last line we neglect the higher order terms than O (0) for we use this expansion to
calculate the kinetic energy where we have to square the time derivative of the coordinates. The




gravity potential energy of the spring is

1s(61,02) Mmsg a l l
U, = do & cos@y —cosfy) | + | —=cosb
/0 ls (61,02) [1 (01,02) ( (cos by 2)> ( 2 1)]

msg 12 ((91,92) l I
- ] 01 — cos s (61,69)  — 2 cosd
ls (61, 69) [25 (61, 02) (cos 1 —cosby) | +1s(61,602) 5 o801

1/1 [
= msg [2 (2 (cos By — cos 92)) + (—2 cos 91>]

msgl 0 mggl
: [4( 07 +63) + 21}: < (637 +63)

The kinetic energy of the spring is

ls(01,62) 1 4y 2 .2
T, = do-—-"_(x +
/0 21, (01, 02) ( y )

Mg L5 (61,62) a (1 ; « [l : 2
20, (61,0) /0 o <z <292> i <1 - l) (291»

22 2
=T <91 +9192+92>

24
The Lagrangian has to include the spring’s part
Ly=T,—Us
l2 .2 .o .2 l
_ ”;54 <01 + 0162 + 6 ) - mgg (63 + 63)

The kinetic energy and potential energy matrices are

V= _ k2 mgl +Lﬂ+msgl
8 2 8 8

Finding the normal mode frequencies is simply a matter of solving the determinant equation
—w?t + v| = 0. We thus have

s kl 2 msl
mgl 1+4 ( +grrlng> _W_w Qng -0
kl 2 mgl A
2 _m_w Zng 1+4 ( +g71ng>
kl Mg o (1 mgl kl 9 Mgl
1+ — 4+ — — — =+ |—
+ 4dmg + 4m “ < + 6mg 4mg T 24mg
, 1 + L s tin T 4mg
wo= 1 _|_ msl msl
6mg 24mg
The normal mode frequencies are therefore
2 _ 1 + I
wy = 5mS
+ 24mg
9 1 + 2 5t .
Wy = ——F———
g + 8mg



To find the mode amplitude ratios, we can do it directly by solving the equation

(—wgt + v) 31 =0

kl kl 2 _msl
1+M+m ( +6mg> 7W7w 274nmg 6’_0
kl 2 msl e
“Tmg — W 2img L+ g + 1 — (+6mg)
kl 2 _msl
<I>'i,1 _ 4mg +wj 2ng
Pi2 1 + 4 + - ( + Gmg)
which give for the two cases
o
L1y
ST
d
21 _ 4
P29
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Problem 4

The kinetic energy and potential energy matrices are

1 0 0

t=— (0 1 0

0 01
1 —e —¢
V(e 1 —e
— —e 1

Finding the normal mode frequencies is to solve the determinant equation |—w?t + V‘ = 0. We thus
have

1—w? —€ —€
—€ 1—w? —€ | =0
—€ —€ 1 — w?

The normal mode frequencies are therefore

w% =1-2¢
w%g =1+e
Since w? > 0, one has

1
—l<e< =
€S53

If we try to find the normal mode vectors via the usual cofactor vectors, we find

For w? = 1 — 2¢, the mode vector is

P =3¢ | 1
1

where the normalization condition gives us

2
3&81 =1= (362a)2 =3
So the w? = 1 — 2e mode vector is
1
2
6)1 = g 1
1



This mode is the oscillation of the entire system without stretching the springs. For the two degen-
1 1

— —
erate mode vectors, we check whether ®5=| 0 | and &3 = % —2 | satisfy the normalization

1

[

condition. One has

no
I

—_—
Ttds=1
TPy =0

3

ol el el

PRSP

&l el el
I

S el el

So 82 and 83 are indeed the w% = 1 + € mode vectors. In mode 82, the pendulum in the middle

doesn’t oscillate while the other two oscillate with phase difference 7. In mode 33, the outer
pendula oscillate in phase while the one in the middle oscillates with phase difference .
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Problem 5

This is a very challenging problem, but it is also an excellent example of finding an equilibrium
and expanding around it when it’s not just a matter of blindly Taylor expanding. We note that
our first solution, while largely correct (modulo a missing factor of 1/2 due to algebraic errors),
was not complete because it assume F in the relativistic term was constant. The solution should
have checked the veracity fo this assumption by recalculating the energy at the end (including
the oscillation energy) and showing that it was valid to take E to be constant to the level of
approximation we used.

However, in thinking about that, we discovered a cleaner way to solve the problem that doesn’t
require this self-consistency check. It’s also much closer to the way equilibria are discussed in the
notes in terms of derivatives of the potential, so is probably closer to the language you are used to.

Let’s first look at the problem conceptually. There are thrre things we need to do:

1. Find the new equilibrium value of the circular orbit, rg, which will differ from the nonrela-
tivistic case because of the relativistic correction to the potential.

2. Expand about this new 7y to find the frequency of radial oscillations.

3. Compare the frequency of radial oscillation to the orbital period for the circular orbit at the
new relativistic radius to determine the angular velocity of precession.

In terms of the mechanics of the expansion, one thing we run into very early is the appearance
of a kinetic energy of radial oscillation in the relativistic correction to the potential. How do we
deal with that? We recognize that this term looks like a correction to the radial oscillation kinetic
energy term. Rather than having to say by fiat that this term ought to be moved to the kinetic
energy, we can let it happen naturally by expanding not the potential only but rather by expanding
the full Lagrangian. This is the technique that is presented in Section 3.1.1 of the lecture notes,
so is not foreign to you (but likely has been forgotten). We will see the solution evolve naturally
when we do this.

We begin with the effective 1-dimensional Lagrangian for the central force problem:

1, 12

LlD(Tv";‘) = §MT - 2/.LT2

—U(r) (1)

Note the negative sign on the centrifugal term! Recall that this term receives a sign flip when going
from the 3D Lagrangian (where it is the 6 kinetic energy and necessarily has a positive sign) to the
effective 1D Lagrangian. This was highlighted in the notes (Section 4.1.1). We now insert the form
for U(r) provided:

. 1 .9 l2 1 2
Lip(r,7) = S HT = 002 Vi(r)+ 25 [Engr = V(r)] (2)
where we explicitly include a ypg subscript on F in the correction term to indicate it is the nonrel-
ativistic energy. Let’s write out Exg — V(r):

l2

_ 1, [ e 1,
Bvie= V(1) = 51y + 5 ui + V0| =V = |5 4 g ui? 0

So far, we have just followed our nose — it is straightforward to write down the total nonrelativistic
energy in a central force problem. Here, of course, the [? term has a positive sign because we are

11



considering the energy, not a Lagrangian. Let’s insert this into 1D Lagrangian and collect terms:

L) = S - vy 2 [GE) (L) w2 (55) (R
LDAnLT) =5 AT 2 pr? " 2uc? [\ 2ur? g 17 2ur? g 17

1o ? 17?2 12 12
= = - 1 —— PR [ ) [ — e 4
g 17 +2u2r202+402 2 12 221272 2 (r) (4)

There are two correction terms to the radial kinetic energy, one of the form i2/p%r?c? ~ Ug /c?
because [ = pvgr for nearly circular orbits and the other of the form v2/c?. The correction term
to the centrifugal term is also of the form 1?/u?r?c? ~ v3 /%

So far we have made no approximations. To continue from here, though, we need to assume
the orbit is close to circular. We shall write r = rg 4+ ¢ where r( is the exact relativistic circular
orbit and ¢ is a small perturbation away from rg. The radial velocity is now 7 = ¢ because 7 = 0

for the circular orbit. We now must Taylor expand everything in sight about r = rg and » = 0:

) 1 .
Lip(ro+4q,q) = <2M7“2

. o1 .9
+ im0 d + B 1lizo 4

T70=0

X [1+< ’ —2 e q+612q2>
2 p2rd ¢ 2 p2rd ¢ 2 2 p2rg
1 /1 | -
+2,u02 <21“" 7;:0+MT|7'~0:OQ+§M|T'O:OQ >]
_( 12 o 12 +6 12 )
2ur3 2urg 22/”’4(]

] 12 5 12 L6 12
2\ 2u2rgc? 2u2rgczq 2 2 u?r 02q

dVv 1 d?v
RO R
dr |, 2 dr? v
1, 12 12 32, 14
. 1+ - - — P+ -5
g 14 [ 2 p2r3 2 ,u27“3c2Q+2,u ch 4 2
(1 P +3 2 )
—\3 7= q
23 prd 2u7“4
ot 12 +1 12 32,
4 p2rd c? 2M2r802q 4,u27“402q
dVv 1 d2v
-V - e A
(ro) dr |, 2 dr? mq

We have been painfully explicit about the expansion of the kinetic energy term because all the
zeroth- and first-order terms vanish because the value of the term and its first derivative at the
equilibrium point vanish because 7 = 0 there.
Now, we will start discarding terms that are of too high order. We are really considering two
orders of expansion right now. There is the relativistic expansion, which comes with terms like
q?/c? and 1?/p2rd c® ~ v3/c?, and there is the spatial Taylor expansion, which yields terms in ¢
and ¢ It is certamly true that ¢/vg < 1. So will neglect anything with the factor ¢?/c?: these
are second-order relativistic terms. In ¢, though, we need to go up to order ¢ because the ¢ term’s
coefficient will be required to vanish in order for » = rg to be an equilibrium. Any terms of order

12



G%q or ¢%>¢* can be discarded because the both ¢ and ¢ are small, so these terms are third or fourth
order in the spatial expansion. So we have

Linlro +0.0) = § e <1+2Ml ;)
(1 12 +312q><1_1 5 )
2,ur0 ,uro 2 prd 4 p? rd c?
e 12 1 12 12
<2 /““0 /“h )(2N q>+<2 /““0) (4,“ 7“002q>

av 1 d?v
ar|, T2 A

q2

0

= V(ro) -

Yes, there are lots of terms, but we’ll see it cleans up. Let’s group by order in ¢ and relativistic
expansion:

. 2 1 2
Lip(ro+¢,q) = — m 1‘1@ — Vi(ro)

(el i
2!“1 2/1,27“802

12 12 12 IS v
ta|l s\l 332) |52 2 232 ) dr
wry dp=ric 2 prg 2 prge dr |,
L 3 3 +1 14 +§ 14 1d*V
1 2pry  8pdric®  2pdric? 8 pBrfcr 2 dr? |

12 L] 12 V(o)

= — _ I — — T
2prd 4 p? rd e 0

P B v
wrd 2 2 3 c? dr |,
+1 22 1+1L + 2 i _3+5L _1d27V
o 14 2 pu2rdc? 1 wrs 2 4 p?rc? 2 dr?

With the terms grouped in this way, we see: 1) a constant term that we can ignore; 2) a term linear
in ¢ who coefficient must vanish in order for 7y to be an equilibrium; 3) a radial kinetic energy
term with essentially a relativistic correction to the reduced mass; and 4) a term quadratic in ¢
that gives the restoring force that drives the oscillation in radius around 9. We first work on (3)

to find rg:
Sy R N1
wrd 2pu2 73 c? dr

+4q

T0

=0 (5)

To

13



At this point, we need to use the actual form of the nonrelativistic force law, which yields

12 12 GuM
s\l-5223) =2 =0
wry 2ucrge rH

12 12
1 g =0
G,uQM< 2u2r802) "o

12 I?
_ [P P [ — 6
0 = TO,NR ( 212 7’(2) c2> TO,NR ( 2 12 7’% NER c2> (6)

where 7o NR = 12/G 1 M is the scale radius for the nonrelativistic case, which is just the radius
of the circular orbit in the nonrelativistic case. We have replaced r¢ with 79 yr in the relativistic
correction factor because including the error that results is of the next highest order in relativistic
correction. We thus have the relativistic circular orbit radius in terms of the nonrelativistic circular
orbit radius and a correction factor that deviates from unity by a relativistic term. We note that
ro < ro,nr- This makes sense given Equation 4: in the initial 1-dimensional Lagrangian, the kinetic
energy gains terms that essentially increase the effective mass, and the centrifugal term is reduced
in magnitude by the relativistic correction. Both those effects — increasing the mass and decreasing
the centrifugal repulsion — will tend to make the radius of the orbit smaller.

Though it is unimportant, we note that we may reduce the constant term by explicitly writing

V(To)t

constant term = — <l2) <1—1l2) —V(ro)
2urg 2 2u2r3 2
2 2
:_<2l 2) (1_;2 2l 2 2>+GMM
©wry p2rgc o
12 1
- (W%) (—2+
Na: 1 2 2
_<l““(2)> <_2 u27“302+1_2u27’362>

(PN (3P
N 2,ur8 4,u27“(2]c2

Of course, we want to rewrite everything in terms of nonrelativistic quantities, so let’s use our
expression for rg in terms of rg ng:

ot ¢ 2 <1 112 >‘2 3 r
constant term = _ —_ = - -
QMT(%,NR 2 /127“(2)02 4 /LQT(Q)’NRCQ
12 2 3 12
a2 <1+222> =0 55—
21Ty NR =o€ 4 g npe
12 1 12
Sl | CR b ”)
<2NT(2J,NR> ( 4 12 T(Q],NR02>

where in the first step we have used the expression for ro/rg yr for the 1/r3 in the prefactor, but
just replace ro with 7o y g in the correction term because that correction term is already small. The
result is just the expected nonrelativistic expression 12 /2y r%y Ng With a relativistic correction.

14



We need to write out more clearly the quadratic term to obtain the frequency of radial oscillation
about 7. We write out the d?V/dr? term and clean up:

: o | (1P 3.5 I 1 d?V
quadratic term = ¢ 77“61 _§+Z,u27"802 -3 WTO
12 3.5 I 1 GuM
SECREANE D
nry 2 4 pfrice 2 Ty
YRR VO T "
e pury 2 4 pPrge? TO,NR

where we again have used ro ng = [?/G u? M. We may substitute in using our expression above
for r¢ in terms of 7o N R:

dratic t o [ 12 3.5 12 (3 12
uadratic term = — Syt v
d 7 wra 2 4 p?rdc? 2 p2rac?

I & 3 2
=St 5 )\1-5 533
2 IR 2 pArice

where we use the more exact expression since the other relativistic correction terms are in similar
form.

We thus have for the 1-dimensional Lagrangian, after discarding the constant term and the
vanishing linear term and including the simplified quadratic term::

Lin(ro+a.d) ~ = u? 1+ . L (L) (-2 1
T = —— | — = — - =5
1D(T0o + 4,49 2,1“1 2,u2r(2)02 21“1 ,u27“§ 2 MQT(%CQ

This is a simple harmonic oscillator Lagrangian. Recalling from the lecture notes that the square
of the natural frequency is the magnitude of the ratio of the coefficients of the ¢ and ¢? terms, we

have
2 2 2 -1
2 ¢ 1f§l7 1+1l7
ose 2 7“3 2 p? 7“(2) c? 2 u? 7“3 c?
Vg 2 12
™ 1-2 2.2 .2
0 WA rg e
27\ 2 12
T -2 2.2 .2
pArgc

where we have used 27 ry/vg = 7 where 7 is the period of the relativistic circular orbit. So the
radial oscillation period is

2 2\ Y2 12
= = 1-2—— = 14+ ——— 8
Tosc Wose T < 212 02> T < 212 Cz) (8)

For completeness, we also would like to relate 7 and 7ngr, where the latter is the period of a
nonrelativistic circular orbit. One must take a bit of care in understanding the correspondence
between relativistic and nonrelativistic orbits. Since I completely determines the orbit for circular
orbits (since FE is determined by [ in this case), let us consider relativistic and nonrelativistic orbits
with the same [. This is consistent with how we calculated rq in terms of ro x g before: we took ro nr

&
I

15



to be the nonrelativistic orbit with the same [ as the relativistic orbit. We need vy to determine
the orbital period. It certainly holds that

UTONRVONR = | = pmo Vg

Rearranging, we thus have

-1
TO,NR 1 l2
Vg = Vg, NR ro = V9,NR 1- 5 m
0,NR
1 12
= 1+ ——55-—7— 9
V9, NR ( + 5 MQT(%NR@) 9)

which is as you would expect — if rg < rg yg for the same [, then vy > vy yr in order for the [
values to match. Using this now to calculate the periods:

27T7"0 < To > (UG,NR> 27TT07NR
T = =
Vg TO,NR Vg Vg,NR
-1
L] 12 - 1 12
= _———_— - - T
2 @2 ng ¢ 2 @2 ng ¢ M

l2
=|1-———=|7™r (10)
( p? T%,NR c? )

The angular precession speed is determined by the ratio 7,s./7 because this tells us what fraction
of an orbit is required to complete one radial oscillation. The angular speed of precession is given
by the change in the angle of the apside per orbital period, where the apside is the point at which
the radial oscillation returns to 0. Therefore, the precession speed is

27 [ Tose o) 12 { 12
QP:T(T _1>:27T 27 22 2 )~ 2 22 2
0 H=To NRC KTy H=To NRC

l3

(11)

w3 Té c?

The above result can be rewritten in a couple of interesting forms. If we replace [ using [*> =
GMQMT(]’NR ~ G u? M rgy, we have

3/2
0 _ (G M) 2 @m)M? 9
L 304 22 T 5/2 o (12)
H=To € ry "¢

The same expression could be rewritten with ro yr instead and be just as true — the difference
between them would be a higher-order relativistic correction. If we instead use I = prg vy, we have

_vgvg_Qwvg

Q, = (13)

ro c2 T 2

which is a nice way of seeing that 2, is a purely relativistic quantity. Again, 7 and vg could be
replaced with their nonrelativistic version and the expression would be as correct.
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An alternate method for deriving the precession frequency is to calculate a force using the 1-
dimensional Lagrangian and then put that into the orbit differential equation, as was suggested by
the hint given in the problem set. Recall that the orbit differential equation is

d (1 1 pr?
Rl e 2R
do? <r> + r 12 (r)

where the u term arises from the centrifugal term in the 1D potential. Returning to the 1D
Lagrangian, Equation 4, we now know which terms survive the Taylor expansion, so we know how
we need to modify the orbit differential equation to include those terms. First, we must add a term
to the force law for the additional potential term
12 12
22ur? 2pu2r2c?
(It appears in L1p with a + sign, but recall that V' appears with a negative sign in the Lagrangian).
Second, we must multiply the kinetic energy term by
l2
1 -
+ 2 272 2

because this correction factor multipled the kinetic energy term in L;p. The only term we are not
including is the #2/c? correction to the kinetic energy term, which we dropped before because it
yielded second-order relativistic corrections.

So the orbit differential equation becomes

1+L d72 1 +17_,U,77‘2 _ﬂ_i _ELL
2u2r2c? ) do? \ r INE dr dr \' 22ur? 2pu?r?c?

-
12 d (1 1 pur? av 1 *
o maz)gm )t o= " 3552
2utrect ) do® \r r l dr 2 p’roc
Again, we presume there to be a circular orbit at r = ry and Taylor-expand the above equation

about rg with r = rg 4 ¢. This time, though, we only need to expand to first order in g because we
are writing the force equation, not an energy equation.

gL NE (1 e\, (1 a
2u2r3c? pPrdc? 1 do? \ro 13 ro 1}
[T av d*v
:ﬁ(ro-i—QTOq) (dr +W
70

1 12 d? 1
2<1+222>3+<q2)
g 2p2rgct ) do ro 1§

ploav| 1ot (v 5 1
= tq|2rg — _—
o 2 u3 rg c? dr o 2 w3 'rf‘j c2

= — T —_—
2% dar

The equation must obviously hold at ¢ = 0, which gives us a condition that allows us to determine

ro as well as eliminate the constant terms from both sides. First, the condition is

L_pfpav| 1 0
S _HF2Yr S
ro 12\ % dr v 213782

L SR S W1
,urg’ 2u2r(2)02 dr
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+ + 7
3r302 0 dr2

o M

=0

T0



which we see is the same as Equation 5. Hence the result for ry will be identical to that obtained

before
12 12
To = TO,NR ( 2.2 r 02> TO,NR 2 112 r% VR 2
Rewriting the orbit differential equation using the relation found by requiring it to hold at ¢ = 0
gives
1 12 d? dv d*v 3
—2<1+222>g—qz—u2q 2r0 o= A0 m| T omaa
g 2p2ric? ) do 5 l dr |, dre |, 2 psrye

d2q o1 2prg dV 32 - 12 !
2 p2rgc? 2 p2 13

prd d?V

12 dr?
o

dg = 970

2 2
TG l dr ro

Now we must use the explicit form of V:

—q

d*q e 1+2,u7“0 GuM +,u7“€; 2GpMY\ 3 12 1_L
92 r 12 3 2 p2rgc? 2p2rd c?
d2q GMQM Gu>M 3 2 2

I e o il LI I R
g2 q< * o EEE) p2rd c? 2p2rdc?
d*q (

l2
1— —
oz 2 12 r002> ( 2u2r802>

d*q l . dq &
T =4 <1 —92 ,1127"202> or, equivalently 02 +4q <1 -2 W> =0

We have obtained a harmonic oscillator equation in ¢(#). Since this is an equation with 6 as the
independent variable, not t, the frequency of oscillation is in units of the orbital angular frequency.

That is:
12 w 2
1-2——— | =wi ==
()=t (25

where 7 = 27 rg/vg is the orbital period. Fortunately, since we were interested mainly in 7,/
anyways, this ratio is what we want:

2 -1/2 2
Tosc 1 l . [
e O I G )

which we see is the same result as we obtained earlier for 7,5./7. Therefore, the precession frequency
result will be the same,

(G M)3/? _ 27

2776 14
1"8/202 T 2 (14)

Q, =
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Problem 6

Let 6* be the scattering angle in the center of mass frame, and 8 be the scattering angle in the lab
frame. From the lecture notes, one has
sin 6* sinf*  sinf”

tanf = = ~
il tcosf* v+ cost* 0%

where we use fact v > 1. Since tanf < 1, we get from the above equation
sinf0* = vytanf ~ 0
where we notice
70 < 1

for sin 0* < 1.
We may obtain the solution by simply using the center-of-mass frame Rutherford cross section
and changing variables to the lab frame. The CM frame differential cross section is

do ([ 1\* 1
dQ. \4F Sin4%*

We use £ = %mgvg because that is the energy of the incoming particle in the CM frame. We may

use trigonometric identities to evaluate sin* %*

sin? % 2 L1 cos.) = % (1— V1 —sin29*> ~ % (1 - \/1—7292>

2 2

in terms of v and 6:

The other thing we need to do is calculate the Jacobian transformation of 3—6. do is unchanged
because it refers to a quantity measured in a plane transverse to the direction of the velocity of the
CM frame. df2. on the other hand satisfies:

o 720 do _ ~2d
V1-9262 /1%

Q% = 27 sin 6,df, = 27 d (cosby) = 27 d (\/1 - 7292) -

Putting it all together, we have

do 72 do

a9 /1 — 202 A9,

2 1 \? 1
:Jljwcmwg) [%<1_m>r

B 1 4~

) = vy

Since no particle can go to sinf, > 1, i.e., v6 > 1,

do

dTZZO for v0 > 1
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Problem 7

No students have turned in Problem 7 yet, so we will delay posting the solution.

Problem 8

Since the total angular momentum is conserved, we can assume it is along z-axis. So conservation
of the angular momentum gives us three constraints

G1 = Zlkcosek = L() B ‘f’
k
= Zlk cos ¢ sinf, = 0
k

G3 = Zlk sin ¢k sin Hk =0
k
where Tk is the angular momentum of the k" particle. The total energy is

o= on =3 (M) (G- - X -

Ik — 1

where oy, = % (GmkM)2 , € 1s the eccentricity of the orbit of the kth particle and e = my since
my < M. Minimizing E7 subject to these constraints G1, Go ,and Gg3 gives us

OFET
e Z 5%

where ¢, are independent variables of k¥ particle, such as 6y, ¢y, € and .. So we have

8ET
86k

Qak

86k 12 ——€,=0=¢=0

which means all particles travel on circular orbits. While we have
OFET
s Z 3¢>k;

= — A9 sin 6 sin ¢k + Ag sin 6 cos ¢, = 0

A3
= — =tan¢y or sinf, =0
A2

If f\‘—g = tan ¢, one has

8ET
89k

= —A1sinf + Ay cos Oy cos ¢ + A3 cos O singp, = 0

80k

7

A
= 22 = cos o tan Oy
A1
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However, Gy and G5 yield
. A2 Ao
Gy = Zk:lk coS ¢, sin Oy, = )‘lzk;lk cos b, = A—lLo =0
Gs =) Ipsin gy sin by, = EZZ cosf = 2310 =0
3 g k k =N g k k=0
Since Lg # 0, it therefore holds

A=A3=0
which imply

Q = cos ¢ tanf =0
A1
A _ sin ¢, tan O = 0
A1

and therefore we still come to 8, = 0.At last one also has

OET
Ol Z 8l k

2
l3 LA A1 €08 01 + Ao cos ¢ sin O, + Az sin ¢y sin B, = 0
3 m3 a2 A1
= r2 —k —_ = ——
rg o l}’; o lz 5

So 7, doesn’t depend on k and thereby the material must all lie on a circular ring. For k** particle,
one has

l2

k
GM mi

T = =l = mpVGMry

and GG gives us

ka\/GM’I“ =1Ly
k
= VGMTka =Ly
k

Lo b (Y
- GM \m
where we use ka = m. And we also find
k

which means

So




