
Physics 106b/196b – Problem Set 8 – Due Jan 12, 2007

Version 3: Jan 12, 2007

This problem set focuses on the mathematics of rotations and some initial material on physics in
rotating coordinate systems, Sections 5.1 and 5.2.1-5.2.2 of the lecture notes. The length of the
problem set is misleading; much of it is in expository material. Problems 1 and 2 are for 106b
students only, 3 though 5 for 106b an 196b students, and 6 and 7 are for 196b students only.
Version 2: Some clarifications on (1), (3), and (6):

• “why” part of Problem 1 unclear.

• In Problem 3, you should assume the orthogonal matrices are real.

• In Problem 6, “given by the angle between the two axes of rotation” is misleading.

Version 3: Further correction to Problem 6.

1. (106b) Show by a specific example that two finite rotations about different axes do not com-
mute. On an algebraic level, why is it that finite rotations do not commute but infinitesimal
ones do (try your example with infinitesimal rotations instead)? Specifically, what terms ap-
pear when you write out a finite rotation that ruin commutativity, and why are these terms
not important for infinitesimal rotations?

2. (106b) Show that the product C = AB of two orthogonal matrices A and B is an orthogonal
matrix. You will do this by using the orthogonality properties of A and B to prove that C
satisfies the orthogonality relations given in Section 5.1.2 of the lecture notes.

3. (106b/196b) Show that, for arbitrary spatial dimension N , the eigenvalues of a real orthogonal
matrix R all have unit magnitude (though they may be complex, even though the matrix
is real). You can do this by allowing ~c to be a (possibly complex) eigenvector of R and
considering the quantity (R~c)T (R~c∗). You must of course use the orthogonality properties
of R. You should not assume that R preserves the norm of ~c, which is given by ~cT~c∗ (or
(~c∗)T ~c ) – it is not necessary to make such an assumption. (Hint: you need to consider
two different ways to reduce the expression (R~c)T (R~c∗) in order to get a constraint on the
magnitude of the eigenvalue.)

Orthogonal matrices have determinant ±1. We usually consider only the “special” subset of
orthogonal matrices that have determinant +1 because these are the ones that correspond
to rotations; including those with determinant −1 would include reflections or combinations
of rotations and reflections. (By the way, you can see how to prove this fact about the
determinant in Section 5.3.1 of the lecture notes, subsection Relation of Euler Form to
Single-Axis Rotation.). Considering only rotations in N = 3 dimensions, explain by a
qualitative argument why this implies that one eigenvalue must be 1. (Hint: what does it
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mean, physically or intuitively, for a vector to be the eigenvector of a rotation matrix with
eigenvalue 1?) Then, using the facts that the determinant is 1 and one eigenvalue is 1 for
N = 3, show that the other two eigenvalues are of the form exp(±iα) for some angle α. (Hint:
recall that the determinant of a matrix is independent of whether it has been diagonalized or
not. Can you therefore write the determinant in terms of the eigenvalues?)

4. (106b/196b) Practice with indices and the summation convention. Though 106b students will
not be tested on tensors, the use of indices and the summation convention will be something
you will find useful later in E&M and future courses, so you should acquire some familiarity
with them. We state in Appendix A of the notes, Equations A.25, A.26, and A.28, the
following vector identities:

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

(~a×~b) · (~c× ~d) = ~a ·
[
~b× (~c× ~d)

]
= (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c)

Using the definitions of the dot and cross product in Equations A.13 and A.14 using index
notation, the properties of εijk under various permutations of the indices (Section A.1), and
the identities given in Equations A.20-A.23 (which you may assume to be true, you don’t
need to prove them!), show that these identities are true.

Next, suppose, for the (~a×~b) · (~c× ~d) identity, we have that ~a = ~∇, ~c = ~∇, and ~b and ~d are
position-dependent. Why are the expressions on the right hand side given for that identity
incorrect or misleading in some way? Look at this section of the lecture notes errata for a
discussion of a similar problem with the first ~a ×

(
~b× ~c

)
identity. This is one reason why

indexed notation is a vast improvement over the vector notation you are used to.

5. (106b/196b) Modified version of Hand and Finch 7.1. We have given one proof in the lecture
notes of addition of angular velocities; here we will develop another. This problem will also
provide good practice with angular velocities and their coordinate representations, which is a
subtle topic and one that you must understand to make sense of rotating coordinate systems
and dynamics of rigid bodies.

In an inertial reference frame F ′′, a locomotive is rounding a curve of radius R at a speed v
in the counterclockwise direction. Let ~Ωt be the angular velocity of the train as measured in
the inertial frame F ′′. The wheels of the locomotive are turning at angular speed Ωw with
respect to the train (whose rest frame we call F ′). Define ~Ωw as the angular velocity of the
wheels (whose rest frame we call F ) as measured in the train frame F ′. Denote by ~ω the
angular velocity of the spinning wheels relative to the inertial (space) frame F ′′. Denote by
R1 the rotation matrix that transforms from F to F ′ and by R2 the rotation matrix that
transforms from F ′ to F ′′.

(a) Addition of angular velocities: First, write down the natural coordinate representations
~Ω

′
w and ~Ω

′′
t . Why are these the “natural” representations? Next, because these angular

velocities are the angular velocities of F relative to (as measured in) F ′ and of F ′ relative
to (as measured in) F ′′, it holds that Ṙ1RT

1 = ~Ω
′
w · ~M and Ṙ2RT

2 = ~Ω
′′
t · ~M. (Why do

we not have to worry about the difference between ~M, ~M ′ and ~M ′′?) It holds that the
rotation matrix to go from F to F ′′ is R = R2R1. It also holds that ṘRT = ~ω ′′ · ~M
because ~ω ′′ is the coordinate representation in F ′′ of the angular velocity of F relative to
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(as measured in) F ′′. Use these various equalities to demonstrate that angular velocities
add by showing that ~ω ′′ = R2

~Ω
′
w + ~Ω

′′
t .

(b) Practice with notation and coordinate representations of angular velocities: Write down
explicit forms (i.e., in terms of R, v, Ωw, and t) for all three coordinate representations
of all three velocities: RT

1
~Ω

′
w, RT ~Ω

′′
t , RT ~ω ′′, ~Ω

′
w, RT

2
~Ω

′′
t , RT

2 ~ω ′′, R2
~Ω

′
w, ~Ω

′′
t , and ~ω ′′.

You may do this completely algebraically by writing down the “natural” coordinate
representation of each velocity and using the rotation matrices, or you may do it more
intuitively by just writing down the results with some written justification.

6. (196b) More difficult version of (1): Suppose two successive finite rotations defined by vectors
~φ1 and ~φ2 are carried out, equivalent to a single rotation ~φ. (This is shown in Section 5.3.1 of
the lecture notes, the subsection titled Relation of Euler Form to Single-Axis Rotation.)
Show that 1

2
~φ1, 1

2
~φ2, and 1

2
~φ form the sides of a spherical triangle, with the angle opposite

to 1
2

~φ determined by the angle between the two axes of rotation ~φ1 and ~φ2. You will have
to do some research on your own in spherical geometry to know what relations ~φ1, ~φ2, and ~φ
must satisfy to form the sides of a spherical triangle and what the angle opposite to ~φ is in
terms of ~φ1 and ~φ2.

7. (196b) Show that the contraction of a tensor of rank m and a tensor of rank n is a tensor of
rank m + n − 2. Specifically, show that if the object Z is defined in terms of the tensors X
and Y by, in any given coordinate representation

Zi1···im−1j1···jn−1 = Xi1···im−1kYj1···jn−1k

(summation convention used), then Z satisfies the transformation properties of a rank m+n−2
tensor.
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