Physics 106b/196b — Problem Set 8 — Due Jan 12, 2007
Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala

Problem 1

Let’s consider a vector 7 first rotates along z- axis by 6; and then along z-axis by 6 where #; and
0y are finite angles. So the coordinates of the vector after rotation turn out to be

x! 1 0 0 cosy —sinf; O x
Y | =10 cosfly —sinfy sinf; cosf; 0 Yy
2 0 sinfy cosby 0 0 1 z
cos 01 —sin 6 0 T
= | sinfycosfy cosbycosfy —sinby Y
sinfysinfs cosfisinfy  cosby z

On the other hand, if we first rotate along z-axis by 62 and then along z- axis by 61, we have

z" 1+cosf; —sinf; O 1 0 0 z
y' | = sin 6, 14+cosf; 0O 0 1+cosfy —sinby y
2" 0 0 1 0 sinfy 1+ cosfy z

cosf)y —sinficosfy sinf sin by T

= | sinf); cosfycosf; —sinbscosb; Y

0 sin 0 cos 05 z

If we set 0; = 62 = 5, we find

x’ 1 -1 0 x
y]1=11 1 -1 Y
2! 1 1 1 z
x" 1 -1 1 T
y' =11 1 -1 Y
2" 0 1 1 z
1 -1 0 1 -1 1
where [1 1 —-1]#[1 1 —1] which means two rotations don’t commute. If we have two
1 1 1 0 1 1

finite rotations Ry = exp (51 . 1\71) and Ry = exp (52 . 1\7[) , generally, [exp (51 . 1\71) , eXp (52 . 1\71)}
won’t vanish which means two rotations don’t commute. However, if 51 and 52 are infinitesimal, we

instead have R; = 1 +§1 .M and Ri=1 +§2-M and therefore we find [1 + 51 . 1\7[, 1+ 52 . 1\7[} =0



where we we have dropped terms quadratic in the infinitesimal rotation angles, which doesn’t hap-
pen in the finite rotations case. Just as in our example, when 6; and 6y are infinitesimal, one

has
z 1 —6; 0 T
y]=160 1 -6 |y
z 0 6 1 z
1,‘” 1 —(91 0 X
Yl =00 1 02| |y
2" 0 6y 6 z

where we could see the two infinitesimal rotations do commute.
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Problem 3

¢ is assumed to be a eigenvector of R with eigenvalue ), namely RZ = \.¢ and R¢* = )\Zc_’; where
we use the fact R is real. So one easily gets

(R (R*) = |\ )2 &
On the other hand, we have
(RA)" (R¢*) = @ RTRe* = 7'
which we obtain
|)\C|2 =1
Since the vector of rotation axis doesn’t change under any rotation in 3D space, the vector must be
the eigenvector with eigenvalue 1. Because the determinant of a matrix M can be written as H/\i

(2
where ); is a eigenvalue of M. So for an orthogonal matrix R with determinant=1 is given by A1 \o
where A1, Ao are two other eigenvalues of R. Then we get A\ A2 = 1 which means A1, A9 can be of
the form exp (+ic) .



Problem 4
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Next, we want to prove

— (@ A(b-d)— (@ diF- )
The first part is easy because it consists basically of just rearranging the factors and applying
cyclicity once:

(@x b) - (Zxd)

( ) ( x Cf)i = (€ijka;br) (€imcidm)

= a; (€ikbk (€itmC1dm)) = a; [€jxibr (€iimcidm)]

= aj; [ejk:ibk (EX d‘\) ] = aj [EX <5X Cf)} )
7 J
—q. [6 % (& x J’)}
where we used the cyclicity property of €;;; in replacing €;;, by €;1;. The second part can be proven
using the same identity as for the proof of the triple product identity:

(@xb)-(Exd)= (5 X 5)@, <5>< J)l = (€ijka;br) (€itmcidm) = (€ijx€itm) (ajbrcidm)
= (6jl5km — 6jm5kl) (ajbkcldm) == ajcjbkdk — ajdjbkck
— @ ) - @ -0

Now, let’s consider the case where @ = 6, c= 6, and b and d are position dependent. The identities

ll s (9 58) (% xd) = - i (9 %) = (9-9) (5-4) - (5-d) (51

where, for the second identity, we have made the obvious fix of rewriting b-Gasé-b. According
to the first expression, the first V should only act on b and the second V should only act on d.
Our vector identities are entirely algebraic and so should not affect these relationships. But the
expressions on the right side do not respect these relationships. In the first expression, the second
V does indeed only operate on cZ; but the first V is naturally interpreted as acting on the entire
expression b x (ﬁ X dj, which would result in the first V acting on d. That’s nonsense. In the
second expression, the first term is clearly nonsense — there is no reason that we should end up
with the second-order derivative operator V-V acting on both b and d since we started only with
separate first-order derivatives. The second term, while it _appears sensible, is not because it has
the V that originally acted on b now acting on d and the V that orlgmally acted on d now acting
on b. Clearly, the only way to preserve the relations between the V operators and the vectors they
should operate on is to use only the index notation and to enforce the operator relationships via
parentheses. For example, instead of

(x8) - (9 xd) =9 [ (¥ %)

(6 X 6) : (6 X d‘) = €jicitm (V1) (Vidn)

(It was fine to rearrange the parentheses from the expressions given earlier because those parentheses
had no impact — they were only there to clarify the situation by grouping factors together.) This
expression preserves the operator relationships properly but would be equivalent to the version in
vector notation if the V vectors were replaced by non-operator vectors.

we would have



Problem 5

(a)

Ql’ . 1\_/]: = RRT = |:(?t (RQRl):| (RQRl)T

= RyRY + RoRRTRT

= Q;/ M + Rzg;; - MR]

=0, M+Ry, - M
The last step requires some further explanation. We can reduce RQQ;} . 1\7IR§ in two ways.
The first is already discussed in the notes in Section 5.1.4 under Examples of Tensors and
in Section 5.2.1 under Acceleration and Fictitious Forces. In that method, we use the
fact that the two rotation matrices in the expression are just transforming the second-rank
tensor @ - M. Since that second-rank tensor is the contraction of the first-rank tensor & and
the third-rank tensor M, one can obtain the transformed version of it by transforming each
of these tensors independently and contracting the transformed results. Since M is isotropic
(the same before and after rotation transformation), we thus just have to transform &, which

is what we did above. The second method is to follow through the details of the index
manipulation. Specifically:

—/ — —/ —
[Rz (Qw : M) Rﬂ i = (RQ)ik (Qw ’ M) Kl (Rg)lj
First, let’s write out explicitly the (Q; . 1\7[) term and also rewrite the last factor:
—/ —
[Ro (M) RE| = (Ra)y, Uy M)y (Ro)

Next, let’s insert 1 = R2TR2 using index notation via inserting g, and d,,q:

(1) ]

(R2>ik 5ka/ 4 (Mq) z(R2)jl

.. w,m>mq
v

(Ra)g (R3) ., (R2)gy Yy (R3),, (Ra)y, (M), (R2)

sp = fw,m

(R2); (R2) g (R2) g, Yy (R2),,, (R2)y, (M), (Ra)

Now, use the orthogonality of Ry to eliminate the first two occurrences of Ra:

pl

= [(Ra) i V] [(Ra)yy (Ra)y, (Ra) (M),

[RQ (Q; . 1\7[) R:ﬂ =05 (Ra),, Uy (R2), g (R2)g, (Ra); (M)

tm " “w,m
)

In the above, we clearly see the rotation transformations acting on the first-rank tensor €
and the third-rank tensor M separately. Finally, we use the fact that M is isotropic so that
it is left unchanged by the three rotation matrices acting on it:

[RQ (Q; : 1\71) RQT} = [(Ra)y, Y] (M),

v



or, without index notation,
-/ - T 5/ -
R, (QWM) R] = (RQQW> ‘M
Finally, because M, M, and M, are independent, we have
Q// _ Q: n RQQ;]

(b) Assume the train is moving in a circle in yz plane in F” frame and therefore ﬁt is along z-axis

/! N
of F”. So the natural coordinate representation 2, , the coordinates of ) in F” frame, is

—//
Qt =

O O

We also assume that wheels spin in the zy plane in F’ frame and ﬁt is along z-axis of F’
—/ N
frame. So the natural coordinate representation £2,,, the coordinates of €, in F’ frame, is

Frame F is rotating about the z-axis of F’ with angular velocity ), relative to F’ and so the
the rotation matrix R is
cos Qyut  sinQut 0

Ry = —sinQut cosQ,t 0
0 0 1
Frame F’ is rotating about the z-axis of F” with angular velocity ‘Qw‘ = 4 relative to F”

and so the the rotation matrix Ry is

1 0 0
Ry =10 cos{t —sinpt
0 sinft cos 4t

So we have

0
RTG, = o
Qy
A 1CA Ot
" " R RC?S w
RTQ, =R{R]Q, =R] | 0 | = | ZsinQyt
0 0
T =1 T T3 %COSth
R'&"=R{Q,+R Q, = %siant
Qu



Sl
Qu
v
N R
RIG, = (0
0
v
R N R
RIG =0, +RIG = 0
Quy
. 0
RQQw = —Qw sin %t
Q,, cos %t
U
. R
G =10
0
v
=1 =/ =/ R v
J" =Rol, + 8 = | —Qysin 5t
Q,, cos %t



Problem 6

The way this problem was written was misleading. The problematic text is

Show that gi)l, ¢2, and qb form the sides of a spherical triangle, with the angle
opposite to ¢ determined by the angle between the two axes of rotation qﬁl and ¢2
(the relationship is not trivial — consider just the simple case of this angle vanishing).

It ought to read

Show that %51, %&2, and % gg form the sides of a spherical triangle, with the angle
opposite to % 5 determined by the angle between the two axes of rotation ggl and 52.

I didn’t have a chance to do the problem before I assigned it, but I got it out of Goldstein and
therefore figured it had been fully vetted. Sad to say, it had not. You might have gotten a hint
that some sort of adjustment would be necessary from a similar equation given in the notes relating
Fuler angles to the angle of rotation about a single axis:

142 cos® = (1+ cosf)cos (¢ + 1)) + cosd

o () -on (55

We will prove a relation somewhat like the second one.

We will prove the relation using, in fact, a similar technique to the one used to prove the
above relation. In that proof, we used the fact that the trace of the rotation written in terms of
Euler angles is the same as the trace of the rotation written as a similarity-transformed single-axis
rotation, and also the fact that the similarity transformation does not affect the value of the trace.
The single-axis rotation matrix gave us the expression on the left involving ® for the trace, while
the Euler-angle rotation matrix gaves us the corresponding expression on the right for the trace.
Our proof will go along similar lines.

Without loss of generality, let us take (51 = ¢1 %2 and gz?z = ¢ (Y sin @12 + £ cos p12) where @12
is the angle between the two vectors defining the rotation axes. It will always be possible to rotate
to a coordinate system in which this is true (first rotate so d_;l is along %, then do a rotation about
2 so that 52 is in the yz plane). The same rotation can be applied to the rotation matrix for the
single-axis rotation gg This will not change the relationship between the three vectors.

With the above simplification, we may explicitly write R; and Re, the rotation matrices for 51
and ggg, respectively. Ry is just a rotation about Z:

C1 —81 0
S1 C1 0
0 01

(We use the shorthand c¢; = cos¢; and 51 = sin¢$1.) We can make a quick check: if ¢; = 7, then
we expect Z to be rotated into ¢ and ¢ into —z. You can check that the above matrix accomplishes
this.

Rs is more complicated. The simplest way to obtain it is to realize that, in a coordinate system
in which 2 points along g;g, the rotation will be a simple rotation about 2 like R;. We can thus
obtain Ry by a similarity transform of a matrix of that form, with the requirement that the rotation
matrix D that does this similarity transform must rotate Z into 52 and thus is a rotation about &



by —¢12:

1 0 0 Coy —89 0 1 0 0
Ro=1| 0 ci2 s12 s c2 0 0 ci2 —s12
0 —s12 c12 0 01 0 s19 c12

(The same abbreviation scheme holds, with o corresponding to ¢2 and 12 corresponding to ¢;2.)
Clearly, the two matrices on either end of the expression are rotations about & and, as is necessary
for the similarity transform, are transposes of each other. The one on the left is D and the one on
the right D”. The central matrix is just a rotation about 2 by ¢9. Writing it out, we have

C2 C12S82 —81282
2 2
Ry = | —ci280 ciaC2 + S79  —C12512C2 + C12512
2 2
81282 —C12812C2 + C12512 S79C2 + €19

We can check that this is the correct matrix, up to the sign of the rotation angle ¢, by just applying
it to ¢9; that vector should be an eigenvector of Ry if it is indeed the rotation axis. Specifically,

C12

By explicitly calculating Rgﬁg, you can see that 52 is indeed an eigenvector of Re.
Next, we calculate the product matrix R = Rs Ry, which is the ¢ rotation followed by the ¢o
rotation. Since we will only need the trace of R, we only calculate the diagonal elements:

2 1252 —S1252 cq —s1 0
R=RyR; = —C1289 C%QCQ + 8%2 —C12812C2 + C12812 S1 ci O
S§1282 —C12812C2 + C12512 S%QCQ + C%Q 0 01

C1C2 + C128182 ? ?

= ?7 198189 + 0%26102 + 8%261 ?

? ? s%co+cly

Then, let us take the trace. Some terms cancel, leaving only

Tr[R] = 1+ c1co + 2 c125152 + i (14 cre2) + 575 (c1 + ¢2)

=142 (0162 + 26128182) + 8%2 (Cl +c9g—1— 0102)

where between the two lines we used c?, = 1 — s3,. We know from the lecture notes (as indicated
above) that the trace of the single-axis rotation version of the matrix is

Tr [R(g)} =142 cos¢
The spherical trigonometry identity we will need is:
cosc = cosa cosb+ cosC sina sinb

where a, b, and c are the lengths of the sides of the spherical triangle and C' is the angle opposite to
side ¢. One can see that the expression we already have is very close if we identify a = ¢1, b = ¢o,
c = ¢, and C = ¢13. But there is the pesky s}, term. After I banged my head against a wall for

10



a while and completely convinced myself this term is not there erroneously, I was inspired by the
half-angle versions of the earlier expression and decided to expand using the half-angle identities:

o . e «
cosa:20082§—1 sma:251n§ 0055

We will abbreviate the half-angle expressions using ¢ and §; that is, ¢, = cos %" and §, = sin %

Let’s rewrite our second trace expression first:
Tr[R(¢)] =1+2 (28 —1) =48 - 1
where ¢ has no subscript because ¢ has no subscript. Our first expression requires much more work:

Tr [R] =142 (0162 + 20123132) + 8%2 (61 +co—1— 0162)
=1+2[(26] — 1) (283 — 1) + 212 (25181) (25282)]
+siy (267 —1)+ (263 —1) —1—(2¢; — 1) (265 — 1)]

Multiply everything out and group terms:

Tr [R] = 3 — 4s, + &5 (8 — dsTy) + (6] + &3) (—4 + 4s1y) + 81281818282
Make liberal use of 1 — s2, = c3,:

Tr [R] = —1 + 4c}y + 46 (1 + cfy) — 4cly (81 + &) + 8c1251815202

Group terms in a suggestive way:
Tr [R] = —1 +4c, [615 — (61 + &) + 1] + 46185 + 81251815282
=—1+4[cly (1=&) (1 — &) + 1 + 2c1251 815262
Again use 1 — 52, = c2,:
Tr [R] = —1 +4 [c],8]33 + ¢165 + 2¢1281¢15262]
= 4[¢18 + c125150)° — 1
which is now in similar form to our other trace expression. Equating the two yields
& = [6162 + c125152)°
or, after dropping the square and writing out the expressions explicitly,

o o1 b2 o1 b2
2

COS — = COS — COS — ~+ COS ¢12 sin — sin —
2 2 2 2

This is exactly the spherical triangle identity with the identification a = 5 ¢1, b = 5 ¢2, ¢ = 5 ¢,
and C = ¢12. Thus, the desired relation is proven.

11



Problem 7

We just need to show how Z;,...;,._j;..j,_, transforms under rotation:

7! = X(l

11 im—1J1"""Jn—1

Y!

U1 lm—18" J1+ " Jn—18

= Rijky - Riy ikt Bsp Xy ip Bt - Ry 11, Risg Y0
=R, - 'Rimflkmfl5quk1”'km71plell T Rjnfllnflnl“'lnflq
=R, - 'Rimflkmflelll T R].nfllnflXkl"'k'mflpyil“'lnflp

= Ri1k1 T Rim—1km—1Rj1l1 T Rjn—lln—lZkl---km—lll-"ln—l

n—14

which is the appropriate transformation for a tensor of rank m +n — 2.
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