
Physics 106b/196b – Problem Set 9 – Due Jan 19, 2007

Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala

Note: The TA is double-checking his solution to Problem 6, some of the algebra may not be right.
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Problem 2

Let us calculate the coordinates of the center of mass in frame F ′ in which the origin sits at the
center of the base of the cone and z is along the axis of the cone. First we need to calculate the
volume of the cone in order to get the density of the cone

V =
∫ h

0
π [(h− z) tanα]2 dz =

1
3
πh3 tan2 α

So the density is ρ = M
1
3
πh3 tan2 α

. According to the circular symmetry, the x and y coordinates of

the center of the mass, xc and yc, are zero. And

zc =
∫ h

0
zρπ [(h− z) tanα]2 dz

=
M

1
3πh

3 tan2 α

(
1
3
πh4 tan2 α− 1

4
πh4 tan2 α

)
=

1
4
h

In the frame F in which the origin sits at the center of mass and z is along the axis of cone, we are
going to calculate the moment of inertia tensor.

I3 = Izz =
∫ 3

4
h

− 1
4
h
dz

∫ ( 3
4
h−z) tanα

0
rdr

∫ 2π

0
dθρ

(
x2 + y2

)
=

∫ 3
4
h

− 1
4
h
dz

∫ ( 3
4
h−z) tanα

0
rdr

∫ 2π

0
dθρr2

=
∫ 3

4
h

− 1
4
h
dz

1
2
ρπ

(
3
4
h− z

)4

tan4 α

=
ρπ

10
h5 tan4 α

=
3
10
Mh2 tan2 α

I1 = I2 = Ixx = Iyy =
∫ 3

4
h

− 1
4
h
dz

∫ ( 3
4
h−z) tanα

0
rdr

∫ 2π

0
dθρ

(
z2 + x2

)
=

∫ 3
4
h

− 1
4
h
dz

∫ ( 3
4
h−z) tanα

0
rdr

∫ 2π

0
dθρ

(
z2 + r2 sin2 θ

)
=

∫ 3
4
h

− 1
4
h
ρdz

[
z2π

(
3
4
h− z

)2

tan2 α+
π

4

(
3
4
h− z

)4

tan4 α

]

= ρπ

[
h5

80
tan2 α+

h5

20
tan4 α

]
=

3Mh2

20

[
1
4

+ tan2 α

]
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where we use

x = r cos θ
y = r sin θ

and Ixx = Iyy because of the circular symmetry.
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Problem 4

Just as in the lecture notes, our rotating coordinate system is one fixed to the rotating earth at
the location of the diversion channel, with x pointing east, y pointing north, and z normal to the
surface. So the angular velocity vector in the rotating system is

ω (ŷ cosλ+ ẑ sinλ)

where λ = 60◦. And the velocity of the current in the rotating system is

−vŷ

So the Coriolis forces acting on the current are

− 2mω (ŷ cosλ+ ẑ sinλ)× (−vŷ)
= −2mωvx̂ sinλ

and point to the west. So the water on the west side is highest. The total force acting on the water
must be normal to the surface – if it were not, then water would flow parallel to the surface and
redistribute itself until this condition is satisfied. So the incline angle of the surface of the water is
given by

tan θ =
Fx
Fz

=
2mωv
mg

=
2ωv sinλ

g
=

2× 3.4× sin 60
9.8

2π
24× 60× 60

= 4.37× 10−5

The difference between the heights of the two sides is

∆h = d tan θ = 47× 4.37× 10−5 m = 2× 10−3 m
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Problem 5

(a) Cone on horizontal surface

At t = 0, the cone is lying flat on its side with its apex at the origin and the line of contact
coincident with the x′ axis. The cone’s z axis is its symmetry axis, with +z running from the
base to the apex. We define the x and y axes of the body system to be such that the body xz
plane coincides with the space x′z′ plane at t = 0, with xz axes rotated by π/2 +α clockwise
relative to the x′z′ axes. At t = 0, the y and y′ axes coincide.

The cone rolls without slipping on the plane and returns to its original position in a time τ ,
i.e. the angular velocity of the center of mass around z′-axis is

~ωp =
2π
τ
~ez′ ≡ ωp~ez′ (1)

and the cone rolls around its z-axis with angular velocity

~Ω =
2π
τ

1
sinα

~ez ≡ Ω~ez (2)

with Ω = ωp

sinα . Both velocities are indeed positive in sense. Decompose ~ωp into the body
frame components and compute the total angular velocity in the body frame (assuming at
initial time the body frame y-axis is on the x′y′ plane and the cone is on the x′-axis)

ωx = ωp cosα cos Ωt = ωp cosα cos Ωt
ωy = −ωp cosα sinΩt = −ωp cosα sinΩt

ωz = Ω− ωp sinα = ωp

(
1

sinα
− sinα

)
(3)

The negative sign on ωy results simply from the way the xy axes rotate about z as the cone
rolls: the y axis begins by rotating “down” into the negative z′ region. Note also the relative
sign of the two pieces contributing to ωz: this occurs because the z axis points from the base
of the cone to the apex and thus makes an angle > π/2 with the z′ axis. The inertia tensor
is diagonal in the body frame, so the angular momentum components are trivially

Lx = I1ωx = I1ωp cosα cos Ωt
Ly = I1ωy = −I1ωp cosα sinΩt

Lz = I3ωz = I3ωp

(
1

sinα
− sinα

)
(4)

and the kinetic energy is

T =
1
2
I1ω

2
x +

1
2
I1ω

2
y +

1
2
I3ω

2
z =

1
2
ω2
p

[
I1 cos2 α+ I3

(
1

sinα
− sinα

)2
]

(5)

Decompose Ω into the space frame components, we have the angular velocity in the space
frame

ωx′ = −Ω cosα cosωpt = −ωp cotα cosωpt
ωy′ = −Ω cosα sinωpt = −ωp cotα sinωpt
ωz′ = ωp − Ω sinα = 0 (6)
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It is probably counterintuitive that the angular velocity along the z′ axis vanishes! One can
understand this by realizing that the total motion is just rotation about the instantaneous
line of contact between the cone and the plane, which always is in the x′y′ plane. Thus, ωz′

vanishes. What about the space-frame angular momentum? At the initial time, the total
angular momentum in the space frame is in the xz plane and x′z′ plane. The total angular
momentum in the space frame is

~L = I1ωx~ex + I3ωz~ez = I1ωp cosα~ex + I3ωp

(
1

sinα
− sinα

)
~ez (7)

= I1ωp cosα (− sinα~ex′ + cosα~ez′) + I3ωp

(
1

sinα
− sinα

)
(− cosα~ex′ − sinα~ez′)

The total angular momentum is precessing around the z′-axis, so it is given in time as

~L = I1ωp cosα
(
− sinα cosωpt~ex′ − sinα sinωpt~ey′ + cosα~ez′

)
(8)

+I3ωp

(
1

sinα
− sinα

) (
− cosα cosωpt~ex′ − cosα sinωpt~ey′ − sinα~ez′

)
The total angular momentum is not constant for general α, i.e. external torque is necessary
to enforce this motion.

The kinetic energy is in general T = 1
2 (~ω)T I~ω; since we have ~ω and ~L, though, it will be

easier to make use of the equivalent form T = 1
2 (~ω)T ~L, which gives

T =
1
2
ω2
p

[
I1 cos2 α+ I3

(
1

sinα
− sinα

)2
]

(9)

which equals the kinetic energy in the body frame (Eq. (5)).

Note that there was no need to explicitly add in center-of-mass motion because in (a) we
calculated the inertia tensor relative to the apex of the cone, not the center of mass. Had we
calculated the inertia tensor relative to the center of mass, we would have had to include the
additional center of mass motion. Calculating the inertia tensor relative to a nonstandard
point can thus simplify some problems.
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(b) Small oscillations of cone on tilted surface
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Problem 6

(a) The system contains be a collection of particles with positions {−→r a} and masses {ma}. In the
lecture notes, one has

−→va ′space =
−→
Ω ′ ×−→ra ′ + R(t)−→vabody

. So the kinetic energy is

T ′ =
∑
a

1
2
ma

(−→va ′space)2 =
∑
a

1
2
ma

(−→
Ω ′ ×−→ra ′ + R(t)−→vabody

)2

=
∑
a

1
2
ma

(−→vabody)2 +
∑
a

1
2
ma

(−→
Ω ′ ×−→ra ′

)2
+

∑
a

ma

(−→vabody · (RT (t)
−→
Ω ′ ×−→ra ′

))
= T +

∑
a

1
2
ma

(−→
Ω ×−→ra

)2
+

∑
a

ma

(−→vabody · (−→Ω ×−→ra
))

= T +
∑
a

1
2
ma

(
Ω2r2a −

(−→
Ω · −→ra

))2
+

∑
a

ma

(−→
Ω ·

(−→ra ×−→vabody
))

= T +
1
2
−→
Ω · I ·

−→
Ω +

−→
Ω ·

−→
L

where T =
∑
a

1
2ma

(−→vabody)2, RT (t)
−→
Ω ′ × −→ra ′ =

−→
Ω × −→ra and −→vabody ·

(−→
Ω ×−→ra

)
=

−→
Ω ·(−→ra ×−→vabody

)
. The Lagrangian is

L = T ′ − V = T +
1
2
−→
Ω · I ·

−→
Ω +

−→
Ω ·

−→
L − V

The two additional terms are essentially the contributions to the kinetic energy that come
about because the unprimed frame is moving. To get the kinetic energy relative to the
unprimed frame from the angular velocity relative to the primed frame, one needs to add the
angular velocity at which the primed frame moves relative to the unprimed frame. Since the
kinetic energy is quadratic in the angular velocity, the additional angular velocity yields one
term that is quadratic in this angular velocity and one term that is the cross-term between the
angular velocity relative to the primed frame and the angular velocity of the primed frame.

(b) In the top frame F ′′, the moment of inertia tensor is

I ′′ =

I1 0 0
0 I1 0
0 0 I2


The rotation matrix R from F ′′ to F is given by

R =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


where θ is the angle between z′′ and z and ψ is the angle by whch the top rotates around the
symmetric axis. So

I = RI ′′RT

=

I1 cos2 θ + I2 sin2 θ 0 (I1 − I2) cos θ sin θ
0 I1 0

(I1 − I2) cos θ sin θ 0 I2 cos2 θ + I1 sin2 θ
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In order to use the angular velocity for the Euler angles, x↔ y, ψ ↔ −ψ, and φ = 0. So

−→ω =

ψ̇ sin θ
θ̇

ψ̇ cos θ


T =

1
2
−→ω TI−→ω

=
1
4

[
2θ̇2I1 + ψ̇2

(
(I1 + I2) + (I2 − I1) cos4 θ

)]
We assume

−→
Ω = Ωyŷ + Ωz ẑ and then

1
2
−→
Ω · I ·

−→
Ω =

1
2

[
I1Ω2

y +
(
I2 cos2 θ + I1 sin2 θ

)
Ω2
z

]
−→
Ω ·

−→
L =

−→
Ω TI−→ω

= I1θ̇Ωy + ψ̇Ωz

(
I2 cos2 θ + (2I1 − I2) cos θ sin2 θ

)
So The Lagrangian is

L =
1
4

[
2θ̇2I1 + ψ̇2

(
(I1 + I2) + (I2 − I1) cos4 θ

)]
+

1
2

[
I1Ω2

y +
(
cos2 θI2 + sin2 θI1

)
Ω2
z

]
+ I1θ̇Ωy

+ ψ̇Ωz

(
I2 cos2 θ + (2I1 − I2) cos θ sin2 θ

)
∼ 1

2

[
θ̇2I1 + ψ̇2

(
I2 + 4 (I1 − I2) θ2

)]
+

1
2

[
I1Ω2

y +
(
I2 + θ2

(
I1 −

I2
2

))
Ω2
z

]
+ I1θ̇Ωy

+ ψ̇Ωz

(
I2 +

(
2I1 −

3
2
I2

)
θ2

)
Since ∂L

∂ψ = 0, pψ =constant and we have

pψ = 2
(
I2 + 4 (I1 − I2) θ2

)
+ Ωz

(
I2 +

(
2I1 −

3
2
I2

)
θ2

)
= ΩzC

ψ̇ = −
Ωz

(
I2 +

(
2I1 − 3

2I2
)
θ2

)
− ΩzC

2 (I2 + 4 (I1 − I2) θ2)

∼ −Ωz

2

[
1− C

I2
+

(
5
2
− 2

I1
I2
− 4C

I2
+

4CI1
I2
2

)
θ2

]
where C is a constant determined by initial conditions. The EOM for θ is

d

dt

(
2I1θ̇ + I1Ωy

)
− ψ̇2 (8 (I1 − I2) θ)− θ

(
I1 −

I2
2

)
Ω2
z − 2ψ̇Ωz

(
2I1 −

3
2
I2

)
θ = 0

2I1θ̈ − 2Ω2
z

[
1− C

I2

]2

(I1 − I2) θ − θ

(
I1 −

I2
2

)
Ω2
z + Ω2

z

[
1− C

I2

](
2I1 −

3
2
I2

)
θ = 0

θ̈ + Ω2
zθ

[(
1− C

I2

)2 (
I2
I1
− 1

)
+

(
I2
2I1

− 1
)

+
(

1− C

I2

) (
2− 3

2
I2
I1

)]
= 0

So the frequency is

ω2 = Ω2
z

[(
1− C

I2

)2 (
I2
I1
− 1

)
+

(
I2
2I1

− 1
)

+
(

1− C

I2

) (
2− 3

2
I2
I1

)]
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Problem 7

(a) Consider a small mass element in the sphere at position ~r, its velocity is ~v = ~ω × ~r, and the
torque is

d ~N = ~r × ~F =
q(r)
c
~r ×

(
~v × ~B

)
=
q(r)
c
~r ×

[
(~ω × ~r)× ~B

]
=

q(r)
c
~r ×

[(
~ω · ~B

)
~r −

(
~r · ~B

)
~ω
]

=
q(r)
c

(~ω × ~r)
(
~r · ~B

)
(10)

where q(r) is the charge density. Integrate over the body

~N =
∫
q(r)
c

(~ω × ~r)
(
~r · ~B

)
dτ = ~ω ×

(∫
q(r)
c
~r~rTdτ

)
· ~B =

Ie
c
~ω × ~B

where we used the fact that the charge distribution is spherically symmetric, so the representation
of the tensor

∫ q(r)
c ~r~r

Tdτ in a Cartesian frame with origin at the center of the sphere is proportional
to the identity matrix, and the coefficient is defined as

Ie ≡
∫
q(r)x2dτ =

∫
q(r)y2dτ =

∫
q(r)z2dτ (11)

For the same reason, the representation of the momentum of inertia tensor is also proportional
to identity matrix, with coefficient

I =
∫
ρ(r)(y2 + z2)dτ =

∫
ρ(r)(z2 + x2)dτ =

∫
ρ(r)(x2 + y2)dτ

= 2
∫
ρ(r)x2dτ = 2

∫
ρ(r)y2dτ = 2

∫
ρ(r)z2dτ (12)

and we have
~N =

1
c

Ie
I
~L× ~B =

qg

2mc
~L× ~B (13)

where the gyromagnetic ratio is given by

g =
2m
q

Ie
I

=
m

q

∫
q(r)x2dτ∫
ρ(r)x2dτ

(14)

(b) If the mass density is everywhere proportional to the charge density, that is to say q(r) =
q

m
ρ(r),

we have g = 1 according to Eq. (14).

(c) The equation of motion of the angular momentum is already derived in (a), i.e.

d~L

dt
= ~N =

qg

2mc
~L× ~B (15)

Since ~L is a vector, in a frame rotating with constant angular momentum ~ω0, the angular momentum
evolution is

d~L

dt

∣∣∣∣∣
rot

=
d~L

dt
+ ~ω0 × ~L =

(
~ω0 −

qg

2mc
~B
)
× ~L (16)

so the effect of magnetic torque is eliminated seen in a frame rotating with angular velocity ~ω0 =
qg

2mc
~B.
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(d) The equation of motion of the angular momentum tells us that ~L itself rotates with angular
velocity ~ωL = qg

2mc
~B. That is, the sphere picks up an additional angular velocity ~ωL along ~B,

causing the 3-axis (which is defined to be the axis along which ~L was originally pointing, though,
of course, one can pick any direction for the 3-axis of a sphere) to precess at angular velocity ~ωL
about ~B. Since the object is spherically symmetric, the additional angular momentum I~ωL is also
along ~B, so I~ωL × ~B = 0 and thus the additional torque vanishes.

(e) Let us consider the evolution of ~L · ~v, where ~v is the linear velocity

d

dt

(
~L · ~v

)
=

d~L

dt
· ~v + ~L · d~v

dt

=
q

mc

[(
~L× ~B

)
· ~v + ~L ·

(
~v × ~B

)]
= 0 (17)

where the last expression vanishes because the triple vector product is cyclic. i.e., ~L·~v is a constant.
We have shown earlier that the spin angular momentum of an electron is constant in magnitude
under the influence of a magnetic field that is constant over the electron. You also know that,
because the magnetic force is perpendicular to ~v, it does not change the magnitude of ~v either
(ignoring any EM wave radiation during the motion of the electron). Therefore, the constancy of
~L · ~v ensures that the angle between the two is constant, and so ~L is always aligned with ~v if it is
so initially.

Another way of saying the same thing is that we know the following (for g = 2):

d~L

dt
=

q

mc
~L× ~B

d~v

dt
=

q

mc
~v × ~B (18)

The first equation was part (a) of this problem, the second equation is the Lorentz force. As noted
above, these kinds of cross-product rates of change imply that ~L and ~v do not change in length,
but simply rotate about ~B. The angular rotation rates are

~ωL =
1

|~L|
d~L

dt
=

q

mc

~L

|~L|
× ~B ~ωv =

1
|~v|
d~v

dt
=

q

mc

~v

|~v|
× ~B (19)

which are equal if the two vectors point along the same direction. That is, the two vector precess
at the same rate, ensuring that they stay aligned if the start out aligned.
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