Physics 106b/196b — Problem Set 9 — Due Jan 19, 2007
Solutions

Andrey Rodionov, Peng Wang, Sunil Golwala

Note: The TA is double-checking his solution to Problem 6, some of the algebra may not be right.

Problem 1
0,
[JRO&LEM ‘/ZA 4 %/15 ﬁo{&@ Y %
ok 2o //a/ej =30 rad

XO’JO’ Z, ~> cauxes 0/ /)‘/e/ez/,;;/
4%MZ{9__'?7 Jﬂ/f’ame

X4~ R<‘> émé,‘fj Frame apy ,\/w%-
Cories oy wild e A?D/O’éaﬁ

74 @j (s Q,eAw//ily Aé/f X—ak/k fwr/4 c,on;?ét/ﬁl

Ve[ocijj Uo":Oob- cm_

Sec

7
Toahl e ? T

.y
ﬁo‘&,}eg h A/UﬁfZO/W;/ @
P)ﬂz/ze 14 i))jfff“/’z

veloc ity @7 i3
‘ J°
ﬁ /[;,ec_& ac /:j on e c/ﬁaoo/:'/o 57

/s gz‘veh 57? %/e %Z/uﬁé
. hotes &0;776 Qy a{}é Z‘Zﬂ Va

«—;——L /yﬂuz/- ‘_QA/C/
5/’%/%/7' = Enwe/' m/‘j"/‘j" ;ﬂ‘j"/ﬁx%;r]“
— m[c,.??(/jj




/S

o/

%\\\ M\.Q&\m euveR W@fﬁ

—

W

\w \,.\ r Ame A !
\M\M\ mwv\\,\w\ N wa&\\ma \No.\«h\ \,W

P

N

@

S Yse hoFatioy I~ q.m\rlw\ \y\bm»\
N.m Nﬁ» the Sym \& w\
/4 R \%\m\s&&m

“e Wl ek TS
HQ\?NN\W\\.

/M_rh ‘" \Mb\ EXIRES S op

Q%\m '\Nmr o Rce .

i _ ®
&,\G\OX%W .I\.v 8”0 — -
> =0
~— S-wo 2 -
=) e \(n\.mim
B3, 27 \
SwWwxr [ = 2, =
T T xel
-—> Q.M Quw - e
- —> -
=, = K& . dm ]S N;
“w X enr\w =

= b?(m w m%
Sy \WS\\\ a\%&h\\ ryh\nh&y Exer vmm,m\ N\w \k hﬁi
dhe L, s gl 4 T

;?Om\e\q FoRee. S
@.&,ﬂx \,m o\v\vﬁ s e \.gn. «\F ‘m s
Zo b force \\s%mwk Notl h\\\_o\\‘mﬂ\

(gt of heag)  [Foncton | g

M@\W\mih e:»x r&ﬂ\ Ahe \mw w_,m/w\w\\M& m\\

&/
lherefore, Mo AAC Lew St "
e, e LAl frow s

EL L N

6u mw X &, — M§Q\ 2,
d g Am\ * \M_,;,ol me e,

ca ¥w n\.N
fo & e kmws..s%\ \V\mos Ao balinee of
Foras i fhe horizoutal plane .

J
7 . 2
ﬂ\m.,n ‘on = MTSQM E % -

W k .\T &\ \,

[ |- iy

/@sm w.m\,.m;.wnshw :ssem\m_,QLN wﬁm?ﬁmgdmww ”

U =0,5 ¢




Vecro Rs

2, <
‘._nw vk»\i PRy 2 K\\ n\\.\\ MALE \\\&.S% Cavse. mtubumlv § \N&\w e W
at a MM\_MVW\\M\N .\.N\\\N\ <&n,m0» Pyou +he Z—aKss 1\\5* PO\,snx,»\muo
277 h,m\~0m.

WG Will the Todidion s

e umw b%\& L&?E \\\ u.;& Q\& fodore e A R &.s ucnnw
M\M (2 %mm% e\ Hand~ Fyef T 7 \%m%ﬁn F- :%}r EENYNIJS&/qu
Wﬂ?nmzm H\m.mgwlxd\mx\.ux \nJ«(NN 1%}\,&”&“ ﬁ sall 5w S\N?,t\s = \WM\EPPQQ =0

oy [ —
l&\&m 3 Yo | = emisrr M 17"+ mg &
%E:,n\mx s\m\ «\,\N Fogces " : &Q M 77

" N\\\ 5 FOL \5\\3 :

I hokizonh/ 3 e 2 . .
bl 46 (S 28. fi, o7 o e d )= [k r T by

oO—> NN \W\\ \W \N\\\ HNMN\\.V\%\@ NQ{,N& \\N\w_ ,N%\m\::h ./N\c\mh 1\\«\& ansuleg JAv u?»\»ﬁ«u\\mﬂ.
hlmvw\?mo ‘e Lhe ﬁk\mo&m\ :II..VQ\MD\ H&A u«?\n\\..\xw\ﬂ\\a \.\S:a\?,n}\ o\»qmr =

\w» — - 4

O—> = > . 0./3 84,
AT T S ~haara) 2,
ﬂ\ ‘R (24 _ R 3 . - -
h\:ﬁ\ ..JQN\U r\w\q\“ ‘N\\\W r\uom.nm(w m\.b.lm\ﬂvm rzm_& HVG.N%\MWM\
:.‘\%\m 15 ofee Nw)\xxw\;w\. g ,N m= 3.0 \MN )
&—> &FN“WV\.&x\;Fin\UJHNNIEN\Nﬁ rF=Zom
~—n —%
W\x\v\mzs.mnoz.. ;= \.\Mv Y kﬁ%\rw%:\umv\ .% ”m\r,w MJ . - -
foree. 3
ﬁx\&«ﬁﬂﬁuaﬂ\ﬁ\.\\w&\mﬁ\& MMW&H\X&V\QW Frorn \.W\.\m\ 0&\3&\4 r\\ + WG \A.v \_\
n€§.mﬂm\wau..€m\ﬂ\w : Q\Giw Z he HLL) \émim&.m.u:mv




Problem 2

Let us calculate the coordinates of the center of mass in frame F’ in which the origin sits at the
center of the base of the cone and z is along the axis of the cone. First we need to calculate the
volume of the cone in order to get the density of the cone

h
1
V= / 7[(h—2)tana)?dz = gwh?’ tan® o
0

TP o According to the circular symmetry, the z and y coordinates of

So the density is p = lﬁhM
3
the center of the mass, x. and y., are zero. And

h
zc—/ zpm [(h — z) tan o)* dz
0
M 1 1
- = |z h4t 2 = h4t 2
7 tan o <37r an”a — - wh” tan” o

1
= -h
4

In the frame F' in which the origin sits at the center of mass and z is along the axis of cone, we are
going to calculate the moment of inertia tensor.

%h (%h—z) tan o 27
Is=1., = . dZ/ T‘d’l“/ d@p (1‘2 + yQ)
—3h 0 0
%h (%hfz) tan o 2 )
= dz/ TdT/ dfpr
in 0 0

NS

h 4
1 3
:/ dz—pm (h—z) tan? o
_ih 2 4

= p—ﬂh5 tan? a

10
= iMh2 tan® o
10
%h (%h—z) tan a 2
L=D=1I,=1I,= dz/ rdr/ dfp (2% + z?)
—%h 0 0

3
1h

(%h—z) tan o 27
dz / rdr / dfp (2% + r?sin”6)
h 0 0

ah 3 ? T (3 !
" pdz | 2% <4h — z) tan® o + 1 <4h — z) tan? o

h’ h®
= pmw [Sotan2a+20tan4a}
_ 3MR? Lo ian?
0 |4




where we use

T =17rcosf

y =rsinf

and I, = I, because of the circular symmetry.
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Problem 4

Just as in the lecture notes, our rotating coordinate system is one fixed to the rotating earth at
the location of the diversion channel, with x pointing east, y pointing north, and z normal to the
surface. So the angular velocity vector in the rotating system is

w(ycos A+ Zsin \)
where A = 60°. And the velocity of the current in the rotating system is
——
So the Coriolis forces acting on the current are

—2mw (Ycos A + Zsin A) x (—vy)

= —2mwvT sin A\

and point to the west. So the water on the west side is highest. The total force acting on the water
must be normal to the surface — if it were not, then water would flow parallel to the surface and
redistribute itself until this condition is satisfied. So the incline angle of the surface of the water is
given by

F,  2mwv  2wvsin A 2 X 3.4 X sin 60 2

tanfh = —% — — — =4.37x107°
M= T Ty g 9.8 24 % 60 x 60 .

The difference between the heights of the two sides is

Ah=dtan =47 x437x10°m=2x 10" m



Problem 5

(a) Cone on horizontal surface

At t = 0, the cone is lying flat on its side with its apex at the origin and the line of contact
coincident with the 2’ axis. The cone’s z axis is its symmetry axis, with +z running from the
base to the apex. We define the x and y axes of the body system to be such that the body zz
plane coincides with the space 2’z" plane at ¢t = 0, with xz axes rotated by /2 + « clockwise
relative to the 2’2’ axes. At t = 0, the y and 3/ axes coincide.

The cone rolls without slipping on the plane and returns to its original position in a time T,
i.e. the angular velocity of the center of mass around 2’-axis is

2
Gp = ;é’zz = wply (1)

and the cone rolls around its z-axis with angular velocity

~ 2m 1
d="—"¢ =0¢ (2)
T sino
with = S;”a. Both velocities are indeed positive in sense. Decompose &, into the body

frame components and compute the total angular velocity in the body frame (assuming at
initial time the body frame y-axis is on the 2’y plane and the cone is on the z/-axis)

Wy = wpcosacos U = w,cosacost
wy = —wpcosasinQt = —w),cosasint

_Q o 1 . 3
w, = —wpsina = w, (sina —sma> (3)

The negative sign on w, results simply from the way the xy axes rotate about z as the cone
rolls: the y axis begins by rotating “down” into the negative 2’ region. Note also the relative
sign of the two pieces contributing to w,: this occurs because the z axis points from the base
of the cone to the apex and thus makes an angle > /2 with the 2’ axis. The inertia tensor
is diagonal in the body frame, so the angular momentum components are trivially

L, = ILw;=Iwy,cosacoslt
L, = ILwy = —Iiwpcosasinlt
1
L, = Iw,=I3w, ( . — sina) (4)
sin «
and the kinetic energy is
T ne? 4 ine?+ i = 12 ncostat 1 (— na) (5)
=-hwi+ -hw, + 3w, = —w cos” « —sina
g 1w T gty T T T > \sina
Decompose ) into the space frame components, we have the angular velocity in the space
frame
wy = —§2cosacoswpl = —w), cot acoswpt
wy = —Qcosasinwyt = —wycot asinwpyt
Wy = wp—Qsina=0 (6)



It is probably counterintuitive that the angular velocity along the 2’ axis vanishes! One can
understand this by realizing that the total motion is just rotation about the instantaneous
line of contact between the cone and the plane, which always is in the x’y’ plane. Thus, w,
vanishes. What about the space-frame angular momentum? At the initial time, the total
angular momentum in the space frame is in the xz plane and 2’2’ plane. The total angular
momentum in the space frame is

- 1
L = Lw,€p+ [3w.e, = Iywy,cosaé, + Izw, <sina — sin a> €, (7)

1
= Ilwp cos « (_ SIN (veys + COS aez’) + I3wp (sma —sina (— COS (€, — SIn aez/)

The total angular momentum is precessing around the z’-axis, so it is given in time as
L = Lwpcosa (—sinacoswyt € — sinasinwpt €, + cos aé) (8)

+13wp (

. —sina (—cosacosw té,. — cosasinw té‘/—sinaé“,)
sin a e L z

The total angular momentum is not constant for general «, i.e. external torque is necessary
to enforce this motion.

The kinetic energy is in general T = %(Q)TIJJ’; since we have @& and L, though, it will be

easier to make use of the equivalent form T' = % (J)’)T L, which gives
T = le Iy cos® o+ I ! sin «v 2 9)
R * \ sina

which equals the kinetic energy in the body frame (Eq. (5)).

Note that there was no need to explicitly add in center-of-mass motion because in (a) we
calculated the inertia tensor relative to the apex of the cone, not the center of mass. Had we
calculated the inertia tensor relative to the center of mass, we would have had to include the
additional center of mass motion. Calculating the inertia tensor relative to a nonstandard
point can thus simplify some problems.

10



(b) Small oscillations of cone on tilted surface
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Problem 6

(a) The system contains be a collection of particles with positions {7,} and masses {mg}. In the
lecture notes, one has

—
—s/ =Y —
Va space = Q' Xrg + R(t)UJbOdy

. So the kinetic energy is

1 2 1 — 2
T = Zima (@;pace) = Z§ma (Q/ X z/ + R(t)@body)

= 3y () + Yy (85 )4 S (o (R0 )
N T+Z%m“ (8~ §)2 + > ma (Vavoay - (2 x 72))
T Y (2202 () e (T * o))
:T+%§ I-0+Q-L
where T = 3" 1mq (Tasoy)”, RT()Q' x 7' = @ x 74 and Tpoay - (D x7) = 9 -

a
(@ X v:(;body). The Lagrangian is
, 1— - = =
L=T —V:T+§Q~Z~Q+Q-L—V

The two additional terms are essentially the contributions to the kinetic energy that come
about because the unprimed frame is moving. To get the kinetic energy relative to the
unprimed frame from the angular velocity relative to the primed frame, one needs to add the
angular velocity at which the primed frame moves relative to the unprimed frame. Since the
kinetic energy is quadratic in the angular velocity, the additional angular velocity yields one
term that is quadratic in this angular velocity and one term that is the cross-term between the
angular velocity relative to the primed frame and the angular velocity of the primed frame.

(b) In the top frame F”, the moment of inertia tensor is

Ii 0 0
ZI"=(0 L ©
0 0 I

The rotation matrix R from F” to F is given by

cosf 0 —sinf cosy —siny 0
R = 0 1 0 siny cosvy 0
sinf 0 cos@ 0 0 1
where 6 is the angle between 2” and z and v is the angle by whch the top rotates around the
symmetric axis. So
Z=RI'R"
I cos? 0+ Irsin?0 0 (I — I) cosfsinf
= 0 _[1 O
(I; — I3) cosfsin® 0 Icos?6 + I sin?6

13



In order to use the angular velocity for the Euler angles, = < y,1 < —1, and ¢ = 0. So
zp. sin 6

= 0
1 cos 6

N
w

T=-w'zT

€]

— DN =

= [29211 + 92 (I + ) + (I — I) cos® 9)}

We assume Q) = Q,y + Q.7 and then

—Q-Z-Q = [L92+ (Ircos” 0+ I sin® 0) 2]

1
2
= IléQy + wQZ (Ig cos® 0 + (21; — I) cos 0 sin® 0)
So The Lagrangian is
17 . . 1 A
L= [29211 +4* (I, + I2) + (I — I1) cos® 9)} +3 (192 + (cos® 01 + sin® 01) QF] + 1,69,
+ 90, (Ig cos® 6 + (21; — I) cos B sin? 19)

~ 5 [9211 —|—¢2 (IQ +4(Il — IQ) 92)] + 5 [Ilgz + <Iz + 6> <[1 — 2)) Qz:| + Il@Qy

2
. 3 9
+ 8, | L2 + 211—512 0

Since % = 0, py, =constant and we have

3
Py = 2 (12 +4 (L - 12)02) +Q, <IQ + (2]1 — 2]2> 92> =0.C

1/') _ _Qz (12 + (2[1 — %IQ) 92) - Q. C
- 2 (I +4 (I, — 1) 0?)

Q, C (5 L 4C 4CL\
~N—Z - (22— — 0
2{ 12+<2 I 12+I§>

where C' is a constant determined by initial conditions. The EOM for 0 is
d ) - L\ )
= (2119+119y) — B —1)0) =0 (L — 5 ) 92 =200, (20— 5L ) 6 =0

2
21,0 — 202 [1—2} (11—12)6—9<11—122> 0% + 02 [1—2] (211_312> -0

C\? (I, I C 31y
1— = =1 —= _ - = ==
( Iz) (Il )+<211 1)+<1 I2> (2 211)
So the frequency is
C\? /T I C 31
202 ((1-2) (-1 2 1 S o2
W : L) \L o R A s

0+ Q%




Problem 7

—

(a) Consider a small mass element in the sphere at position 7, its velocity is ¥ = & x 7, and the
torque is

AN = FXﬁ:@F ( E) q(cr) x[(@’xf)xg}
= Wi [(3-8)r- (7-5) 3] = W@ ) (7 5) (10)

Cc

where ¢(r) is the charge density. Integrate over the body

N:/ﬁfHaxm(ﬂéyh:wx(/mpﬁfm>z§ % x B

where we used the fact that the charge distribution is spherically symmetric, so the representation
of the tensor [ @FFT dr in a Cartesian frame with origin at the center of the sphere is proportional
to the identity matrix, and the coefficient is defined as

I, = /q(r)xQdT = /q(r)deT = /q(r)szT (11)

For the same reason, the representation of the momentum of inertia tensor is also proportional
to identity matrix, with coefficient

1= o)+ P = [ o) 4 e = [ o) +oP)ar

_ 2/p@m%722/p@w%722/}@p%7 (12)

and we have

(14)

(b) If the mass density is everywhere proportional to the charge density, that is to say ¢(r) = 4 p(r),
m
we have g = 1 according to Eq. (14).

(c) The equation of motion of the angular momentum is already derived in (a), i.e.

—

dL = q9 = 3
E—N—chLXB (15)

Since L is a vector, in a frame rotating with constant angular momentum &y, the angular momentum
evolution is

drL dL . q9
o A L C R

rot

E) x L (16)

so the effect of magnetic torque is eliminated seen in a frame rotating with angular velocity g =
a9 B.
2mc

15



(d) The equation of motion of the angular momentum tells us that L itself rotates with angular

velocity & = QqWQLcé. That is, the sphere picks up an additional angular velocity &; along é,

causing the 3-axis (which is defined to be the axis along which L was originally pointing, though,
of course, one can pick any direction for the 3-axis of a sphere) to precess at angular velocity &y,
about B. Since the object is spherically symmetric, the additional angular momentum I&y, is also
along B , so I, x B =0 and thus the additional torque vanishes.

(e) Let us consider the evolution of L - @, where @ is the linear velocity

(@) - Gl g
_ wzc[(fxB)~v+f-<z7x§)]:O (17)

where the last expression vanishes because the triple vector product is cyclic. i.e., L-is a constant.
We have shown earlier that the spin angular momentum of an electron is constant in magnitude
under the influence of a magnetic field that is constant over the electron. You also know that,
because the magnetic force is perpendicular to ¥, it does not change the magnitude of ¥ either
(1gnor1ng any EM wave radiation during the motion of the electron) Therefore, the constancy of
L - ¥ ensures that the angle between the two is constant, and so L is always aligned with v if it is
so initially.
Another way of saying the same thing is that we know the following (for g = 2):

dL. q - = i g 4

—=—LXxB — = v x B 18

dt mc dt mcv (18)
The first equation was part (a) of this problem, the second equation is the Lorentz force. As noted
above, these kinds of cross-product rates of change imply that L and ¢ do not change in length,
but simply rotate about B. The angular rotation rates are

. 1dL q¢ L = L 1dv  q ¥ _ 5
L |L| dt  mc|L]| e |o] dt ~ mc |V (19)

which are equal if the two vectors point along the same direction. That is, the two vector precess
at the same rate, ensuring that they stay aligned if the start out aligned.
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