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Exercise 1

a) The magnetic dipole moment of the loop:

m = IA n̂ = Ia2 n̂

The loop consists of 4 straight wires of length a, pairwise with the current in the same direction.
Hence, the magnetic force,

F = I
∫

dl × B = IL × B

has opposite direction, but is equal in magnitude, for such pairs of straight wires (”current
carrying conductor elements”). Thus, the total force on the current loop is zero. Some details
are included in this figure:
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We see from the figure that the forces from the magnetic field would have deformed the current
loop if that had been a possibility. For a macroscopic current loop, this is usually a negligible
effect, but if the current loop is a classical model of an electron in an orbit around a nucleus,
we see that in addition to an alignment of the current loop (which is the topic of this exercise),
the magnetic field will influence the orbital motion of the electron around the nucleus. In other
words: The magnetic moment changes both in direction and in absolute value. The first effect
is paramagnetism, the second effect is diamagnetism. A classical model of diamagnetism is the
topic in exercise 3, here we concentrate on the orientation of m.

b) From the figure above, we see that the two currents running parallel to the xz-plane are
influenced by forces in positive and negative y direction, respectively. These forces will then
not contribute to the torque around the y axis.
The forces acting on the currents running parallel to the y axis results all together in a torque
(see figure below and above)
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= −r1F1 sin θ ŷ − r2F2 sin θ ŷ

= −2 ·
a

2
· IaB sin θ ŷ

= −Ia2
· B sin θ ŷ

= −m · B sin θ ŷ

= m × B

The change of sign in the last line is because we had chosen a positive angle θ between the z
axis and n̂, i.e., between B and m. The cross product m × B is, by definition, m times B
times the sine of the angle between m and B, i.e., mB sin(−θ) = −mB sin θ.

c) In exercise 3c in øving 6 we derived a general relation between the torque τ and the corre-
sponding potential energy U , namely that a rotation through an angle dα under the influence
of a torque τ results in a change dU in potential energy given by

dU = −τ dα

The derivation of this relation did not depend upon what kind of forces and torques we are
talking about, and must therefore be valid also for our magnetic dipole in a magnetic field.
Thus:

U(θ) =
∫ θ

θ0

dU

= −

∫ θ

θ0

τ(α) dα

= mB
∫ θ

θ0

sin α dα

= mB (cos θ0 − cos θ)

= −mB cos θ

= −m · B

Here, I chose U(0) = −mB, i.e., θ0 = π/2.
Sketch:
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We have minimal U , and thus a stable equilibrium for θ = 0, i.e., when the dipole is oriented so
that m is parallel with B. We have maximum value of U , and therefore an unstable equilibrium
for θ = ±π, i.e., when the dipole is oriented so that m is parallel with −B.
This is the analogy in magnetism to polarization of dielectric media in an external electric field:
Magnetic dipoles align in the external magnetic field. As mentioned above, this is what we call
paramagnetism. We have talked about different kinds of magnetism in the lectures – here is a
brief summary:
Materials that consist of atoms which have an atomic magnetic dipole moment which is not

zero, and where the dipole moments on atoms close to each other to not interact with each other,
are paramagnets. Without an external magnetic field, the atomic magnetic dipole moments will
be oriented in random directions, so that the average magnetization, i.e., the average magnetic
dipole moment pr unit volume (see item d)), becomes zero everywhere in the material. We
had exactly the same situation concerning average polarization in a dielectric when we had
zero external electric field. With an external magnetic field, we obtain a tendency of alignment
of magnetic dipole moments along the external field, and thereby an average magnetization
different from zero. Examples of paramagnetic materials are aluminum (Al) and magnesium
(Mg).
Materials consisting of atoms with zero atomic magnetic dipole moments have nothing to align
in an external magnetic field. However, as mentioned above, the orbital motion of the electrons
around the nucleus will be affected by an external magnetic field, so that we have an induced

magnetic dipole moment in each atom. Such materials are diamagnets. We will look qualita-
tively on this effect in exercise 3 below and find that the induced magnetic dipole moment will
always be directed opposite to the external field. Diamagnetism is a much weaker effect than
paramagnetism. Also in paramagnets, where we do have permanent atomic magnetic dipole
moments, we have this diamagnetic ”response” in an external magnetic field. However, the
diamagnetic response will be almost negligible in a paramagnet. In order to be able to measure
diamagnetism, we need a material with zero atomic magnetic dipole moments at the outset
(i.e., before we switch on the external field). Examples of diamagnets are gold (Au), silver (Ag)
and copper (Cu).
In some materials, we have atoms with magnetic dipole moments that interact with the dipole
moments on the neighbouring atoms. For example, the interaction may be such that it is
energetically favored that neighbouring atoms have their magnetic dipole moments in the same
direction. Then we have a ferromagnet, and examples of ferromagnets are iron (Fe), cobalt
(Co) and nickel (Ni).

d) The maximum density of magnetic dipole moment in iron is equal to the number of iron
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atoms pr unit volume times the magnetic dipole moment pr iron atom:

m

V
= 2µB ·

7.9 · 106

55.9
· 6.02 · 1023 = 2 · 9.27 · 10−24

·
7.9 · 106

55.9
· 6.02 · 1023 = 1.6 · 106

The SI unit of m is Am2, the unit of V is m3. Hence, the unit of magnetic dipole moment pr
unit volume, or magnetization, is A/m.

Exercise 2

The direction of B:

• By = 0 because dB ∼ ŷ× r̂ ⊥ ŷ according to Biot-Savart’s law. (All the contributions to
the current run in the y direction.)

• Bz = 0: Look at the figure below. Here, dB+ and dB
−

are contributions to the magnetic
field above and below the xy plane, respectively, from ”symmetrically located” infinitely
long, thin current carrying wires in position ±x. The Biot-Savart law and inspection of
the figure then yields the result that B must point in the positive x direction for z > 0
and in the negative x direction for z < 0.
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The absolute value of the magnetic field cannot depend upon x or y when the current carrying
plane is infinite. Further, B must have the same absolute value a distance z above the xy plane
as a distance z below the same plane. (B+ = B

−
= B, see figure below) Then the best choice of

amperian loop should be clear: A rectangle with the surface normal in the positive y direction,
symmetrically located with respect to the xy plane:
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When the integration curve is chosen as shown in the figure, the current enclosed by the
amperian loop is positive, according to the right hand rule. With a length L in the x direction,
the enclosed current is Iin = i · L. Then, Ampere’s law yields:

∮

B · dl = 2 · B · L = µ0i · L

or
B = µ0i/2

(On the vertical pieces of the amperian loop, we have B ⊥ dl so these give zero contribution
to the integral.)
Alternatively, we could initially have located the complete amperian rectangle on one side of
the xy plane. Then we would have had zero enclosed current, and thereby found that B must
be independent of z. Next, we locate the amperian loop so that it encloses a part of the xy
plane, and therefore a certain current, and finally find the same answer as above. As far as I
can see, it is sufficient to use the Ampere law once when we choose the curve symmetric with
respect to the xy plane.

Exercise 3

a) The centripetal acceleration is v2
0/R whereas the Coulomb force is e2/4πε0R

2. Then, New-
ton’s 2. law gives

me

v2
0

R
=

e2

4πε0R2
⇒ R =

e2

4πε0mev2
0

The orbital angular moment of the electron is

L0 = me r × v0 = meR v0 ẑ

while its magnetic dipole moment is

m0 = IA = −
e

2πR/v0

· πR2 ẑ = −
1

2
ev0R ẑ = −

e

2me

L0

b) The chosen direction of B implies that the magnetic force F m = −e v × B is directed
towards the nucleus, i.e., in the same direction as the attractive Coulomb force. Assuming the
orbital radius R does not change, the speed v is determined by the equation

me

v2

R
=

e2

4πε0R2
+ evB

This is a 2. order equation for v,

v2
−

eBR

me

v −
e2

4πε0meR
= 0,
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with solution

v =
eBR

2me

+

√

√

√

√

e2

4πε0meR
+

(

eBR

2me

)2

(The solution with a negative sign in front of the square root is negative and not applicable.)
Let us go back and look at the speed without the magnetic field:

v0 =

√

e2

4πε0meR

We see immediately that v > v0. This means that the magnetic dipole moment

m = −
1

2
evR ẑ

is larger than before we turned on the magnetic field. In other words, the change

∆m = m − m0

is directed opposite to the external magnetic field.
If the magnetic field instead was directed downwards, B = −B ẑ, the magnetic force would
be directed radially outwards, i.e., in the opposite direction of the Coulomb force, so that the
additional term evB in the equation of motion would enter with the opposite sign. Thus, the
new speed v would have become smaller than the initial speed v0, and the magnetic dipole
moment also smaller than before we turned on the magnetic field. Again: The change in
magnetic dipole moment would still be directed opposite to the external field.
In conclusion: An external magnetic field influences the orbital motion in the atom in such
a way that the induced magnetic dipole moment, i.e., the magnetic dipole moment associated
with the change in the orbital motion, will be opposite to the external field. I.e., diamagnetism.
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