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Exercise 1
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b) Let us imagine cylinder formed bar magnets. Such a magnet can then be viewed as a current
carrying sylindrical ”shell”, alternatively closely spaced current carrying rings. We look at the
magnetic force acting on such a ring in the magnetic field from the other bar magnet:
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The force dF on a small element dl of the ring carrying a current Im is, in the magnetic field
B, given by

dF = Imdl × B
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Two such forces are drawn in the figure above. We see that from symmetry arguments, the
net force on such a ring must be towards the left. The same argument can be done for all the
”rings” that together make up the whole bar magnet. Hence, we get attraction between the
magnets.
Putting the two magnets S against S (or N against N) corresponds to a reversal of the current
direction in the ring in the figure above. Then, we must also reverse the direction of all the
contributions dF so that the total force on the magnet becomes to the right, i.e. repulsion.

c) An unmagnetized sphere made of steel contains a large number of ferromagnetic domains,
where all atomic magnetic dipoles within a single domain point in the same direction, so that
the magnetization M d in the domain becomes nonzero. However, with no external magnetic
field, M d in different domains will point in various directions, so that the total magnetization
in the sphere becomes zero. When the sphere enters the magnetic field of the bar magnet, the
atomic dipole moments will be aligned along the external field, so that the whole sphere gets
a magnetization M k in the direction of the axis of the bar magnet. Now, we have essentially
the same situation as in b) and can associate with the sphere a magnetization current in the
surface, just as we did for the bar magnet. Hence, we get a net attraction betwee the bar
magnet and the sphere.
It does not matter whether we put the sphere at the S- or the N-pole of the magnet. In both
cases, the magnetic dipoles of the sphere will be aligned with the external field and give a net
magnetization and corresponding magnetization current in the surface with direction so that
the net force on the sphere becomes towards the magnet.

Exercise 2

a) We have used Ampere’s law in the lectures to calculate the magnetic field inside a long
solenoid:

B = µ0nI1 = µ0
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One winding of the solenoid wire encloses an area A = πR2, and therefore a magnetic flux

φ = BA = µ0
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d
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Then, N1 windings must enclose a flux which is N1 times bigger, because here, the magnetic
field is constant everywhere inside the solenoid. Hence:

φ1 = N1φ = µ0
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One winding of solenoid 2 encloses exactly the same area, and therefore the same amount of
flux φ, so that N2 windings of solenoid 2 must enclose a total magnetic flux equal to

φ2 = N2φ = µ0
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b) The self inductance L becomes
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c) Mutual inductance M becomes

M =
φ2
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d) Numerical values:

L = 4π · 10−7 ·
12002

0.6
· π · 0.012 = 9.5 · 10−4

M = 4π · 10−7 ·
1200 · 600

0.6
· π · 0.012 = 4.7 · 10−4

In the SI system, inductance has its own unit, the henry (H). So, here the self inductance L
is 0.95 mH and the mutual inductance M is 0.47 mH. Alternatively, we may use the unit T
m2/A, since magnetic flux must have the unit of magnetic field times area, i.e., T m2.

Exercise 3

Here, we must find in which positions ±x0 we have turns that give zero x component to Bdipol.
The turns on the interval (−x0, x0) will then be those that contribute with negative x component
to B.
From the given formula and the figure in the exercise, we have:
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Here, we have expressed r̂ in cartesian components, i.e., r̂ = cos θ x̂+sin θ ŷ = (x/r) x̂+(y/r) ŷ,
where θ is the angle between m and r̂.
Thus, zero x component when

3
x2
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− 1 = 0

and since r2 = x2 + y2, we find
x0 = y/

√
2

On the length 2x0 =
√

2y = 0.707 m, we have 707 turns.
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