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FEzercise 1

a) C

Electrons have negative charge. An ezxcess of N electrons thus implies a net negative charge:
Q=-Ne=-5-10%-16-107°C=-8-10°C = -8 uC

Here, ;1 denotes micro, i.e., 1 uC = 107° C.

b) A
Here, it is sufficient to consider the direction of the partial forces that act on the third charge:
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With Pytagoras, we have a distance of \/8a between the two positive charges. Since the
Coulomb force is proportional to 1/r%, the force between the two positive charges becomes half
the force between the negative and the positive charge. The vector sum becomes as indicated
in the figure, i.e., a total force F' with negative x component and positive y component.

c) C

Total electric field in P is the vector sum of the contributions from the four point charges.
The configuration in figure 3 yields the largest field strength. (No field contribution has a
component upwards in this case.)
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FEzercise 2

a) With a line charge (i.e., charge pr unit length) A, the charge dg and @ on a small length dz
and on the whole rod becomes, respectively,

dg = Adx Q=)L

b) Electric field from element dx in position z:

Adx d
dE = F=A
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where we have introduced A = \/4mey. From the figure we see that this vector has components

A
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dE, = —dEsinf = — cos 6

Here, we have chosen z = 0 when § = 0, and the sign is in agreement with the given information,
i.e., # > 0 when z > 0. We use the given hint and express dz and 1/r? by the angle 6:

z = Rtanf = dx= Fdf
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The components F; and E, of the field E in the point P from the whole rod is found by
integrating dF, and dE,:
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E, = /dEzz—E A sin 0d0 = 7 ” cosf = (cos By — cos By)
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Comment: We might have been "unfortunate” and started with the relation x = r sin 6, which
yields dx = rcosfdf + sin 6 dr, since both # and r vary with z. But things work out nicely
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anyway: We have cosf = R/r, i.e., r = R/ cos 6, and hence

1

dr = _Rc052 9(— sin 6) df
so that

dz rcos@df -+ sin 0 dr
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c) With P equally far from the two ends of the rod, we have §; = —6,, and therefore cos); —
cosfy = 0 and sin @ —sinfy = 2sinf; = L//R? + L?/4 Thus:
E,=0

and N
E=FE, =
AnegR\/R? + L2 /4

Far away from the rod, i.e., R > L: We may then replace the square root by R because we
may neglect L?/4 in comparison with R?. Then we obtain:
B~ AL Q
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This is the same as the electric field from a point charge () in a distance R. Not unexpected:
If we are far away, the rod essentially looks like a point charge with total charge @) = AL.

d) An infinitely long rod is achieved by letting #; — —n/2 and 6; — 7/2. Again we have
E, =0, and hence

A
EF=F =
y 27T€0R
In other words: The field from an infinitely long line charge falls off inversely proportional with
the distance R.

FEzxercise 3

a) The area of a thin ring with radius R and width dR is dA = 2rRdR, so the charge on such
a ring is

dg=0dA=2nr0cRdR
The area of the disk is A = TRZ, so the total charge on the disk is

Q=0A=10R]
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If one does not remember the area of a circular disk, one may of course determine the total
charge () by integrating dgq:

Ro Ro p2

Qz/dq: / 2roRdR =210 | — = noR?

0 0 2
And if one also does not remember what the circumference of a ring is, the charge on the thin
ring may be found by starting with a small angle d¢ and the area enclosed between R and
R + dR. This area is Rd¢ - dR, and if we integrate this expression over ¢ from 0 to 27, we get
2m RdR, which must then be the area of the thin ring with radius R and width dR.

b) We divide the disk into infinitesimally thin rings with width dR (see figure below). All points
on the ring lie in the same distance r from the point on the z axis. Diagonally located points
(or: areas dA) contribute to the field in such a way that the x and y components of the total
field becomes zero (cf example in the lectures). The z component becomes:

d
dE, = 762 cos
T
Since r is constant around the whole ring, one may let d@) be the charge on the thin ring:
2w
dQ =ocRdR d¢ =2noRdR
0

Hence the field from the disk becomes

1 /Ro 2rocRa dR oa |®
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Here, we have used
a
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An alternative would have been to use the angle 6 as integration variable:

R df dR
t3110 = ;; = d(t3119) ——E;;;?a ——'7;—
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where 79 and 6, are defined in the figure above.

¢) When a > Ry, one might at first (as in 2¢ above) consider replacing (/a? + RZ with a.
However, that only gives us the ”trivial” solution E, = 0, whereas we are interested in the

dominating non-zero contribution to F,. This means that we must expand y/a? + R3 and
include sufficiently many terms so that we end up with something which is no longer zero:
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Here, we have used the approximation that was given in the text, (1 4+ a) /2 ~ 1 — «/2, with
a=R:d> < 1.

This is the field in a distance a from a point charge Q = 0 A, where A = 7R2 is the area of the
disk. As expected: If we are sufficiently far away, we see no difference between a charged disk
and a point charge.

In the opposite limit, a < Ry, we may neglect the term a/y/a? + R3 in comparison with 1.
This gives us
o

z

280

In other words, a uniform electric field which depends neither on the distance a nor the extent
Ry of the disk. Hence, this is the field outside an infinitely large plane with surface charge
density o. It might not be obvious to you that the field then becomes independent of the
distance to the plane, but that’s the case! Of course, in practice we never have infinite planes
of charge at our disposal, but this is nevertheless an important result: With a large charged
plane, we generate an approximately uniform electric field near the plane, as long as we stay
away from the edges of the plane. We will use this result many times later.



