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Ezercise 1

a) Maximum electric field of 3 MV /m is achieved with a surface charge density

Omax = €0Fmax = 8.85-10712.3.10° =2.7-107°C/m>

b) A metal sphere with radius R and charge @) has a surface charge density
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We see that maximum value of ¢ corresponds to minimum value of R:
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min =\ o " Var.27.105 = O

¢) On a surface where the atoms are arranged in a regular quadratic lattice with a distance
0.3 nm between nearest neighbours, each surface atom occupies an area Ay = (0.3 - 10*9)2 =
910 %m?2. Thus, the number of surface atoms pr m? is (9-1072°)~! = 1.1-10"

quadratic lattice: triangular lattice:

areapr lattice site (i.e. atom)

If the surface atoms were arranged in a regular triangular lattice (with the same nearest neigh-
bour distance 0.3 nm = 3 f\), the area pr surface atom would be a regular heragon with sides
V/3 A. The area of such a hexagon is 9v/3/2 A? ~ 7.8-10 2 m?, which results in about 1.3-10%
atoms pr m2. In other words, somewhat more closely packed than with a quadratic lattice!

d) With a charge pr unit surface area o = 2.7 - 107°C/m” and 1.1 - 10! surface atoms pr
m?, we have an average charge pr surface atom 2.7 - 107°/1.1 - 10" = 2.45 - 10724C, which is
2.45-1072*/1.6 - 107! = 1.5 - 107° of the charge of an electron. This must also represent the
fraction of surface atoms that has an extra electron.



FEzercise 2

a) On the positive charge, there acts a force F, = ¢FE and on the negative charge acts a force
_ = —qFE. The total force must be the sum of these two:

F=F,+F =qE—qE=0
Comment: If the electric field is not uniform, there will be a net force on the dipole:

F,

E E

One end of the dipole (here: the lower one, i.e., the negative end) will be in a region of stronger
electric field strength than the other. Hence, the dipole will be pulled in the direction of
increasing electric field strength. This is what happens when a rubbed balloon sticks to the
wall. The balloon has a net charge and creates a non-uniform electric field. Electric dipoles in
the wall are attracted by the balloon, or the other way around, the balloon is attracted to the
wall.

b)

a
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T=r xFitr xF =2 (qE)-i—(—g)x(—qE):qaxE:pr

If we use the right hand rule, we see that the vector p x E points into the paper plane, i.e., in
the negative z direction. Thus:

T=pXE=—-FE xp=—pFEsinf 2

c) Here, we have dU = —71 da. This means that a small rotation of the dipole through an angle
da, under the influence of the torque 7, results in a change dU in potential energy given by
—7 da. Thus, the potential energy for a given value of the angle 6 between E and p, relative
to a chosen reference U(6), becomes
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= pE(cosfy — cosb)
= —pEcosb

Here, I chose U(0) = —pFE, i.e., §y = 7/2. An equally "natural” choice would have been 6y = 0,
resulting in U(0) = 0 and U(+7) = 2pE.



Sketch:

u(e)

-7t 0 Tl

We have minimum value for U, and hence a stable equilibrium situation, for # = 0, i.e., when
the dipole is oriented with p along E.

In conclusion: Electric dipoles, for example polar molecules in a dielectric, align along an
external electric field.

FEzercise 8

We have E = 0 everywhere inside the metal in electrostatic equilibrium. (See the lecture notes.)
This means, according to Gauss’ law, that a gaussian surface S (closed surface) that encloses
the cavity, and lies completely inside the conductor, encloses zero net charge (gi,):

E=0 = qinzaoy{E-dA:O
S

This gaussian surface may be located arbitrarily close to the surface of the cavity, so we may
conclude that a charge —¢ has been induced on the surface of the cavity. (Then, the total
charge inside the gaussian surface is ¢ — ¢ = 0.)

This induced charge must distribute itself over the cavity surface in such a way that the electric
field disappears everywhere inside the conductor. In other words, the contribution to the field
inside the conductor from the point charge ¢ must precisely be cancelled by the contribution
from the induced charge —g. Then, I hope, it should be more or less obvious that we must
have the largest amount of induced charge at the bottom, where the point charge lies close to
the surface, and the smallest amount of induced charge at the top, where the point charge is
farther away.

Since the conductor has zero net charge, we must also have an induced charge ¢ on the outer
surface of the conductor. (Remember: No net charge inside a conductor in equilibrium!) This
charge will distribute itself uniformly over the outer surface because the “asymmetry” caused
by the point charge within the cavity is cancelled by the induced charge —q on the cavity
surface.

Thus, outside the sphere, we simply “see” a spherically symmetric surface charge, so that the
electric field outside the sphere becomes

q

FE =
(r) deqr? ’

where r is the distance from the center of the sphere.



Electric field lines will be roughly like this:
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We have chosen to draw 8 field lines pr charge ¢. All 8 field lines starting on the point charge
must terminate on the surface of the cavity, and in such a way that they are perpendicular to
the surface. (Electric field always normal to a metal surface!) Inside the conductor, E = 0, so
here we have no field lines. On the outer surface, we have a charge ¢ uniformly distributed, so
here we have again 8 field lines, directed radially outwards.

Comment: It followed directly from Gauss’ law and the fact that £ = 0 inside the conductor,
that the total induced charge is —q and ¢, respectively, on the inner and outer surface of the
conductor. However, I guess we haven’t really argued sufficiently for how these induced charges
distribute themselves. One thing is certain: Together, all the charges must distribute themselves
so that we obtain E = 0 everywhere inside the conductor. Above, I have simply claimed that
the point charge ¢ and the inner induced charge —g do this job alone, without any “help” from
the outer induced charge ¢q. Can we be sure that this is at all possible? The answer is yes:
Imagine a VERY VERY large metal sphere with a tiny cavity somewhere deep inside, and with
a point charge located inside the cavity, as above. Now, all the outer induced surface charge
is simply so far away from the cavity that in order to obtain E = 0 inside the conductor (at
least in the vicinity of the cavity), the inner induced charge —g must cancel the field from the
point charge alone. In other words, it is possible to obtain E = 0 inside the conductor without
any help from the charge on the outer surface. But then we may conclude that this is the only
possibility, no matter how big or small the metal sphere is. Why is this the only possibility?
Well, we have socalled uniqueness theorems in electrostatics which guarantee that a possible
charge distribution is also the only possible one. (This is not “pensum”! However, see e.g.
Griffiths, chapter 3, if you are interested.)



